Lectures on Fluid Mechanics


Book Description

A readable and user-friendly introduction to fluid mechanics, this high-level text is geared toward advanced undergraduates and graduate students. Topics include a derivation of the equations of fluid motion from statistical mechanics, classical theory, and a portion of the modern mathematical theory of viscous, incompressible fluids, with considerable attention to the Navier-Stokes equations. 1973 edition.




Lectures on Fluid Dynamics


Book Description

Explains the motivation and reviewing the classical theory in a new form; Discusses conservation laws and Euler equations; For one-dimensional cases, the models presented are completely integrable




Lectures on Geophysical Fluid Dynamics


Book Description

Lectures on Geophysical Fluid Dynamics offers an introduction to several topics in geophysical fluid dynamics, including the theory of large-scale ocean circulation, geostrophic turbulence, and Hamiltonian fluid dynamics. Since each chapter is a self-contained introduction to its particular topic, the book will be useful to students and researchers in diverse scientific fields.




Fundamentals of Physics I


Book Description

A beloved introductory physics textbook, now including exercises and an answer key, explains the concepts essential for thorough scientific understanding In this concise book, R. Shankar, a well-known physicist and contagiously enthusiastic educator, explains the essential concepts of Newtonian mechanics, special relativity, waves, fluids, thermodynamics, and statistical mechanics. Now in an expanded edition—complete with problem sets and answers for course use or self-study—this work provides an ideal introduction for college-level students of physics, chemistry, and engineering; for AP Physics students; and for general readers interested in advances in the sciences. The book begins at the simplest level, develops the basics, and reinforces fundamentals, ensuring a solid foundation in the principles and methods of physics.




Lectures on Topological Fluid Mechanics


Book Description

This volume contains a wide-ranging collection of valuable research papers written by some of the most eminent experts in the field. Topics range from fundamental aspects of mathematical fluid mechanics to DNA tangles and knotted DNAs in sedimentation.




Illustrated Experiments in Fluid Mechanics: the NCFMF Book of Film Notes


Book Description

This volume contains notes for 21 of the 22 major 16-mm sound films prepared under the direction of the NCFMF and covering nearly all of the fundamental phenomena of fluid motions.




Flow, Deformation and Fracture


Book Description

Over forty years of teaching experience are distilled into this text. The guiding principle is the wide use of the concept of intermediate asymptotics, which enables the natural introduction of the modeling of real bodies by continua. Beginning with a detailed explanation of the continuum approximation for the mathematical modeling of the motion and equilibrium of real bodies, the author continues with a general survey of the necessary methods and tools for analyzing models. Next, specific idealized approximations are presented, including ideal incompressible fluids, elastic bodies and Newtonian viscous fluids. The author not only presents general concepts but also devotes chapters to examining significant problems, including turbulence, wave-propagation, defects and cracks, fatigue and fracture. Each of these applications reveals essential information about the particular approximation. The author's tried and tested approach reveals insights that will be valued by every teacher and student of mechanics.




Physics of Continuous Matter, Second Edition


Book Description

Physics of Continuous Matter: Exotic and Everyday Phenomena in the Macroscopic World, Second Edition provides an introduction to the basic ideas of continuum physics and their application to a wealth of macroscopic phenomena. The text focuses on the many approximate methods that offer insight into the rich physics hidden in fundamental continuum mechanics equations. Like its acclaimed predecessor, this second edition introduces mathematical tools on a "need-to-know" basis. New to the Second Edition This edition includes three new chapters on elasticity of slender rods, energy, and entropy. It also offers more margin drawings and photographs and improved images of simulations. Along with reorganizing much of the material, the author has revised many of the physics arguments and mathematical presentations to improve clarity and consistency. The collection of problems at the end of each chapter has been expanded as well. These problems further develop the physical and mathematical concepts presented. With worked examples throughout, this book clearly illustrates both qualitative and quantitative physics reasoning. It emphasizes the importance in understanding the physical principles behind equations and the conditions underlying approximations. A companion website provides a host of ancillary materials, including software programs, color figures, and additional problems.




Fluid Dynamics


Book Description

In the summer of 1941 Brown University undertook a Program of Advanced Instruction and Research in Mechanics. This in fact was the precursor to the present day Division of Applied Mathematics. Certainly an outstanding feature of this program must have been the lectures in Fluid Dynamics by Professor Friedrichs and the late Professor von Mises. Their notes were prepared in mimeograph form and given a wide distribution at that time. Since their appearance these lectures have had a strong influence on teaching and research in the subject. As the reader soon learns the notes have lost none of their vitality over the years. Indeed in certain instances only in the last few years has the -field caught up with the ideas developed in the course of these lectures. Many ideas of value are still to be found in these notes and the Editors are most happy to be able to include this volume in the series. The corrections which have accumulated over the years have been incorporated, and in addition an index has been added. With these exceptions all desire to revise has been resisted. Also in this connection we are very grateful to Dr. T. H. Chong for carefully overseeing the preparation of the present manuscript.




Computational Methods for Astrophysical Fluid Flow


Book Description

This book leads directly to the most modern numerical techniques for compressible fluid flow, with special consideration given to astrophysical applications. Emphasis is put on high-resolution shock-capturing finite-volume schemes based on Riemann solvers. The applications of such schemes, in particular the PPM method, are given and include large-scale simulations of supernova explosions by core collapse and thermonuclear burning and astrophysical jets. Parts two and three treat radiation hydrodynamics. The power of adaptive (moving) grids is demonstrated with a number of stellar-physical simulations showing very crispy shock-front structures.