Lectures on Closed Geodesics
Author : W Klingenberg
Publisher :
Page : 248 pages
File Size : 40,92 MB
Release : 1978-01-01
Category : Curves on surfaces
ISBN : 9783642618826
Author : W Klingenberg
Publisher :
Page : 248 pages
File Size : 40,92 MB
Release : 1978-01-01
Category : Curves on surfaces
ISBN : 9783642618826
Author : Elie Cartan
Publisher : World Scientific
Page : 284 pages
File Size : 32,69 MB
Release : 2001
Category : Mathematics
ISBN : 9789810247478
Elie Cartan's book Geometry of Riemannian Manifolds (1928) was one of the best introductions to his methods. It was based on lectures given by the author at the Sorbonne in the academic year 1925-26. A modernized and extensively augmented edition appeared in 1946 (2nd printing, 1951, and 3rd printing, 1988). Cartan's lectures in 1926-27 were different -- he introduced exterior forms at the very beginning and used extensively orthonormal frames throughout to investigate the geometry of Riemannian manifolds. In this course he solved a series of problems in Euclidean and non-Euclidean spaces, as well as a series of variational problems on geodesics. The lectures were translated into Russian in the book Riemannian Geometry in an Orthogonal Frame (1960). This book has many innovations, such as the notion of intrinsic normal differentiation and the Gaussian torsion of a submanifold in a Euclidean multidimensional space or in a space of constant curvature, an affine connection defined in a normal fiber bundle of a submanifold, etc. The only book of Elie Cartan that was not available in English, it has now been translated into English by Vladislav V Goldberg, the editor of the Russian edition.
Author : Leonor Godinho
Publisher : Springer
Page : 476 pages
File Size : 26,41 MB
Release : 2014-07-26
Category : Mathematics
ISBN : 3319086669
Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.
Author : Weihuan Chen
Publisher : World Scientific Publishing Company
Page : 368 pages
File Size : 13,47 MB
Release : 1999-11-30
Category : Mathematics
ISBN : 9813102985
This book is a translation of an authoritative introductory text based on a lecture series delivered by the renowned differential geometer, Professor S S Chern in Beijing University in 1980. The original Chinese text, authored by Professor Chern and Professor Wei-Huan Chen, was a unique contribution to the mathematics literature, combining simplicity and economy of approach with depth of contents. The present translation is aimed at a wide audience, including (but not limited to) advanced undergraduate and graduate students in mathematics, as well as physicists interested in the diverse applications of differential geometry to physics. In addition to a thorough treatment of the fundamentals of manifold theory, exterior algebra, the exterior calculus, connections on fiber bundles, Riemannian geometry, Lie groups and moving frames, and complex manifolds (with a succinct introduction to the theory of Chern classes), and an appendix on the relationship between differential geometry and theoretical physics, this book includes a new chapter on Finsler geometry and a new appendix on the history and recent developments of differential geometry, the latter prepared specially for this edition by Professor Chern to bring the text into perspectives.
Author : John M. Lee
Publisher : Springer Science & Business Media
Page : 232 pages
File Size : 22,74 MB
Release : 2006-04-06
Category : Mathematics
ISBN : 0387227261
This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.
Author : Joel W. Robbin
Publisher : Springer Nature
Page : 426 pages
File Size : 29,85 MB
Release : 2022-01-12
Category : Mathematics
ISBN : 3662643405
This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.
Author : Zhongmin Shen
Publisher : World Scientific
Page : 323 pages
File Size : 50,65 MB
Release : 2001-05-22
Category : Mathematics
ISBN : 9814491659
In 1854, B Riemann introduced the notion of curvature for spaces with a family of inner products. There was no significant progress in the general case until 1918, when P Finsler studied the variation problem in regular metric spaces. Around 1926, L Berwald extended Riemann's notion of curvature to regular metric spaces and introduced an important non-Riemannian curvature using his connection for regular metrics. Since then, Finsler geometry has developed steadily. In his Paris address in 1900, D Hilbert formulated 23 problems, the 4th and 23rd problems being in Finsler's category. Finsler geometry has broader applications in many areas of science and will continue to develop through the efforts of many geometers around the world.Usually, the methods employed in Finsler geometry involve very complicated tensor computations. Sometimes this discourages beginners. Viewing Finsler spaces as regular metric spaces, the author discusses the problems from the modern metric geometry point of view. The book begins with the basics on Finsler spaces, including the notions of geodesics and curvatures, then deals with basic comparison theorems on metrics and measures and their applications to the Levy concentration theory of regular metric measure spaces and Gromov's Hausdorff convergence theory.
Author : Ana Cannas da Silva
Publisher : Springer
Page : 240 pages
File Size : 39,91 MB
Release : 2004-10-27
Category : Mathematics
ISBN : 354045330X
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
Author : W. Klingenberg
Publisher : Springer Science & Business Media
Page : 238 pages
File Size : 44,40 MB
Release : 2012-12-06
Category : Mathematics
ISBN : 3642618812
The question of existence of c10sed geodesics on a Riemannian manifold and the properties of the corresponding periodic orbits in the geodesic flow has been the object of intensive investigations since the beginning of global differential geo metry during the last century. The simplest case occurs for c10sed surfaces of negative curvature. Here, the fundamental group is very large and, as shown by Hadamard [Had] in 1898, every non-null homotopic c10sed curve can be deformed into a c10sed curve having minimallength in its free homotopy c1ass. This minimal curve is, up to the parameterization, uniquely determined and represents a c10sed geodesic. The question of existence of a c10sed geodesic on a simply connected c10sed surface is much more difficult. As pointed out by Poincare [po 1] in 1905, this problem has much in common with the problem ofthe existence of periodic orbits in the restricted three body problem. Poincare [l.c.] outlined a proof that on an analytic convex surface which does not differ too much from the standard sphere there always exists at least one c10sed geodesic of elliptic type, i. e., the corres ponding periodic orbit in the geodesic flow is infinitesimally stable.
Author : Liviu I. Nicolaescu
Publisher : World Scientific
Page : 606 pages
File Size : 14,87 MB
Release : 2007
Category : Mathematics
ISBN : 9812708537
The goal of this book is to introduce the reader to some of the most frequently used techniques in modern global geometry. Suited to the beginning graduate student willing to specialize in this very challenging field, the necessary prerequisite is a good knowledge of several variables calculus, linear algebra and point-set topology.The book's guiding philosophy is, in the words of Newton, that ?in learning the sciences examples are of more use than precepts?. We support all the new concepts by examples and, whenever possible, we tried to present several facets of the same issue.While we present most of the local aspects of classical differential geometry, the book has a ?global and analytical bias?. We develop many algebraic-topological techniques in the special context of smooth manifolds such as Poincar duality, Thom isomorphism, intersection theory, characteristic classes and the Gauss-;Bonnet theorem.We devoted quite a substantial part of the book to describing the analytic techniques which have played an increasingly important role during the past decades. Thus, the last part of the book discusses elliptic equations, including elliptic Lpand Hlder estimates, Fredholm theory, spectral theory, Hodge theory, and applications of these. The last chapter is an in-depth investigation of a very special, but fundamental class of elliptic operators, namely, the Dirac type operators.The second edition has many new examples and exercises, and an entirely new chapter on classical integral geometry where we describe some mathematical gems which, undeservedly, seem to have disappeared from the contemporary mathematical limelight.