Lectures on Linear Logic


Book Description

The initial sections of this text deal with syntactical matters such as logical formalism, cut-elimination, and the embedding of intuitionistic logic in classical linear logic. Concluding chapters focus on proofnets for the multiplicative fragment and the algorithmic interpretation of cut-elimination in proofnets.




Probability Theory


Book Description

Probability theory




Mathematical Foundations of Computer Science 1993


Book Description

This volume contains the proceedings of the 18th International Symposium on Mathematical Foundations of Computer Science, MFCS '93, held in Gdansk, Poland, August-September 1993. The MFCS symposia, organized annually in Poland and the former Czechoslovakia since 1972, have a long and well-established tradition. Over the years they have served as a meeting ground for specialists from all branches of theoretical computer science, in particular - algorithms and complexity, automata theory and theory of languages, - concurrent, distributed and real-time systems, - the theory of functional, logic and object-oriented programming, - lambda calculus and type theory, - semantics and logics of programs, and others. The volume contains 12 invitedlectures and 56 contributed papers selected from 133 submissions.




A Course in Linear Algebra


Book Description

"Suitable for advanced undergraduates and graduate students, this text introduces basic concepts of linear algebra. Each chapter contains an introduction, definitions, and propositions, in addition to multiple examples, lemmas, theorems, corollaries, andproofs. Each chapter features numerous supplemental exercises, and solutions to selected problems appear at the end. 1988 edition"--




Linear Algebra Done Right


Book Description

This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.




On Intuitionistic Linear Logic


Book Description




A First Course in Linear Algebra


Book Description

"A First Course in Linear Algebra, originally by K. Kuttler, has been redesigned by the Lyryx editorial team as a first course for the general students who have an understanding of basic high school algebra and intend to be users of linear algebra methods in their profession, from business & economics to science students. All major topics of linear algebra are available in detail, as well as justifications of important results. In addition, connections to topics covered in advanced courses are introduced. The textbook is designed in a modular fashion to maximize flexibility and facilitate adaptation to a given course outline and student profile. Each chapter begins with a list of student learning outcomes, and examples and diagrams are given throughout the text to reinforce ideas and provide guidance on how to approach various problems. Suggested exercises are included at the end of each section, with selected answers at the end of the textbook."--BCcampus website.







Logic and Scientific Methods


Book Description

This is the first of two volumes comprising the papers submitted for publication by the invited participants to the Tenth International Congress of Logic, Methodology and Philosophy of Science, held in Florence, August 1995. The Congress was held under the auspices of the International Union of History and Philosophy of Science, Division of Logic, Methodology and Philosophy of Science. The invited lectures published in the two volumes demonstrate much of what goes on in the fields of the Congress and give the state of the art of current research. The two volumes cover the traditional subdisciplines of mathematical logic and philosophical logic, as well as their interfaces with computer science, linguistics and philosophy. Philosophy of science is broadly represented, too, including general issues of natural sciences, social sciences and humanities. The papers in Volume One are concerned with logic, mathematical logic, the philosophy of logic and mathematics, and computer science.




The Blind Spot


Book Description

These lectures on logic, more specifically proof theory, are basically intended for postgraduate students and researchers in logic. The question at stake is the nature of mathematical knowledge and the difference between a question and an answer, i.e., the implicit and the explicit. The problem is delicate mathematically and philosophically as well: the relation between a question and its answer is a sort of equality where one side is ``more equal than the other'': one thus discovers essentialist blind spots. Starting with Godel's paradox (1931)--so to speak, the incompleteness of answers with respect to questions--the book proceeds with paradigms inherited from Gentzen's cut-elimination (1935). Various settings are studied: sequent calculus, natural deduction, lambda calculi, category-theoretic composition, up to geometry of interaction (GoI), all devoted to explicitation, which eventually amounts to inverting an operator in a von Neumann algebra. Mathematical language is usually described as referring to a preexisting reality. Logical operations can be given an alternative procedural meaning: typically, the operators involved in GoI are invertible, not because they are constructed according to the book, but because logical rules are those ensuring invertibility. Similarly, the durability of truth should not be taken for granted: one should distinguish between imperfect (perennial) and perfect modes. The procedural explanation of the infinite thus identifies it with the unfinished, i.e., the perennial. But is perenniality perennial? This questioning yields a possible logical explanation for algorithmic complexity. This highly original course on logic by one of the world's leading proof theorists challenges mathematicians, computer scientists, physicists, and philosophers to rethink their views and concepts on the nature of mathematical knowledge in an exceptionally profound way.