Lectures on Probability Theory and Mathematical Statistics - 3rd Edition


Book Description

The book is a collection of 80 short and self-contained lectures covering most of the topics that are usually taught in intermediate courses in probability theory and mathematical statistics. There are hundreds of examples, solved exercises and detailed derivations of important results. The step-by-step approach makes the book easy to understand and ideal for self-study. One of the main aims of the book is to be a time saver: it contains several results and proofs, especially on probability distributions, that are hard to find in standard references and are scattered here and there in more specialistic books. The topics covered by the book are as follows. PART 1 - MATHEMATICAL TOOLS: set theory, permutations, combinations, partitions, sequences and limits, review of differentiation and integration rules, the Gamma and Beta functions. PART 2 - FUNDAMENTALS OF PROBABILITY: events, probability, independence, conditional probability, Bayes' rule, random variables and random vectors, expected value, variance, covariance, correlation, covariance matrix, conditional distributions and conditional expectation, independent variables, indicator functions. PART 3 - ADDITIONAL TOPICS IN PROBABILITY THEORY: probabilistic inequalities, construction of probability distributions, transformations of probability distributions, moments and cross-moments, moment generating functions, characteristic functions. PART 4 - PROBABILITY DISTRIBUTIONS: Bernoulli, binomial, Poisson, uniform, exponential, normal, Chi-square, Gamma, Student's t, F, multinomial, multivariate normal, multivariate Student's t, Wishart. PART 5 - MORE DETAILS ABOUT THE NORMAL DISTRIBUTION: linear combinations, quadratic forms, partitions. PART 6 - ASYMPTOTIC THEORY: sequences of random vectors and random variables, pointwise convergence, almost sure convergence, convergence in probability, mean-square convergence, convergence in distribution, relations between modes of convergence, Laws of Large Numbers, Central Limit Theorems, Continuous Mapping Theorem, Slutsky's Theorem. PART 7 - FUNDAMENTALS OF STATISTICS: statistical inference, point estimation, set estimation, hypothesis testing, statistical inferences about the mean, statistical inferences about the variance.







Introduction to Probability


Book Description

Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.




Lectures on Probability Theory and Statistics


Book Description

This volume contains lectures given at the Saint-Flour Summer School of Probability Theory during the period 8th-24th July, 1999. We thank the authors for all the hard work they accomplished. Their lectures are a work of reference in their domain. The School brought together 85 participants, 31 of whom gave a lecture concerning their research work. At the end of this volume you will find the list of participants and their papers. Finally, to facilitate research concerning previous schools we give here the number of the volume of "Lecture Notes" where they can be found: Lecture Notes in Mathematics 1975: n ° 539- 1971: n ° 307- 1973: n ° 390- 1974: n ° 480- 1979: n ° 876- 1976: n ° 598- 1977: n ° 678- 1978: n ° 774- 1980: n ° 929- 1981: n ° 976- 1982: n ° 1097- 1983: n ° 1117- 1988: n ° 1427- 1984: n ° 1180- 1985-1986 et 1987: n ° 1362- 1989: n ° 1464- 1990: n ° 1527- 1991: n ° 1541- 1992: n ° 1581- 1993: n ° 1608- 1994: n ° 1648- 1995: n ° 1690- 1996: n ° 1665- 1997: n ° 1717- 1998: n ° 1738- Lecture Notes in Statistics 1971: n ° 307- Table of Contents Part I Erwin Bolthausen: Large Deviations and Interacting Random Walks 1 On the construction of the three-dimensional polymer measure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Self-attracting random walks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3 One-dimensional pinning-depinning transitions. . . . . . . . . . . 105 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .




An Introduction to Probability and Statistics


Book Description

A well-balanced introduction to probability theory and mathematical statistics Featuring updated material, An Introduction to Probability and Statistics, Third Edition remains a solid overview to probability theory and mathematical statistics. Divided intothree parts, the Third Edition begins by presenting the fundamentals and foundationsof probability. The second part addresses statistical inference, and the remainingchapters focus on special topics. An Introduction to Probability and Statistics, Third Edition includes: A new section on regression analysis to include multiple regression, logistic regression, and Poisson regression A reorganized chapter on large sample theory to emphasize the growing role of asymptotic statistics Additional topical coverage on bootstrapping, estimation procedures, and resampling Discussions on invariance, ancillary statistics, conjugate prior distributions, and invariant confidence intervals Over 550 problems and answers to most problems, as well as 350 worked out examples and 200 remarks Numerous figures to further illustrate examples and proofs throughout An Introduction to Probability and Statistics, Third Edition is an ideal reference and resource for scientists and engineers in the fields of statistics, mathematics, physics, industrial management, and engineering. The book is also an excellent text for upper-undergraduate and graduate-level students majoring in probability and statistics.




Philosophical Lectures on Probability


Book Description

Bruno de Finetti (1906–1985) is the founder of the subjective interpretation of probability, together with the British philosopher Frank Plumpton Ramsey. His related notion of “exchangeability” revolutionized the statistical methodology. This book (based on a course held in 1979) explains in a language accessible also to non-mathematicians the fundamental tenets and implications of subjectivism, according to which the probability of any well specified fact F refers to the degree of belief actually held by someone, on the ground of her whole knowledge, on the truth of the assertion that F obtains.










High-Dimensional Probability


Book Description

An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.




Lectures on Stochastic Programming


Book Description

Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available. Readers will find coverage of the basic concepts of modeling these problems, including recourse actions and the nonanticipativity principle. The book also includes the theory of two-stage and multistage stochastic programming problems; the current state of the theory on chance (probabilistic) constraints, including the structure of the problems, optimality theory, and duality; and statistical inference in and risk-averse approaches to stochastic programming.