Lectures on the Poisson Process


Book Description

A modern introduction to the Poisson process, with general point processes and random measures, and applications to stochastic geometry.




Lectures on the Poisson Process


Book Description

The Poisson process, a core object in modern probability, enjoys a richer theory than is sometimes appreciated. This volume develops the theory in the setting of a general abstract measure space, establishing basic results and properties as well as certain advanced topics in the stochastic analysis of the Poisson process. Also discussed are applications and related topics in stochastic geometry, including stationary point processes, the Boolean model, the Gilbert graph, stable allocations, and hyperplane processes. Comprehensive, rigorous, and self-contained, this text is ideal for graduate courses or for self-study, with a substantial number of exercises for each chapter. Mathematical prerequisites, mainly a sound knowledge of measure-theoretic probability, are kept in the background, but are reviewed comprehensively in the appendix. The authors are well-known researchers in probability theory; especially stochastic geometry. Their approach is informed both by their research and by their extensive experience in teaching at undergraduate and graduate levels.




Lectures on the Coupling Method


Book Description

Practical and easy-to-use reference progresses from simple to advanced topics, covering, among other topics, renewal theory, Markov chains, Poisson approximation, ergodicity, and Strassen's theorem. 1992 edition.




Lectures on Risk Theory


Book Description

"... Especially now, where from the side of mathematical finance interest is also shown for insurance-related products, a book like this one will definitely be instrumental in communicating the basic mathematical models to non-experts in insurance. I therefore welcome this book for its intended audience." P. Embrechts. Mathematical Reviews, Ann Arbor "... [The book] is useful as a detailed theoretical complement to one of the classical introductory texts on risk theory ...". M. Schweizer. Zentralblatt für Mathematik, Berlin "... The author's goals are clearly proclaimed at the outset, and they are pursued with persistence and integrity. The result is a book which is an integral whole, original in some respects, with interesting contributions. And no errors - not even a single misprint. I recommend it to every tutor of risk theory as a source of mathematically solid proofs and complete explorations of certain aspects of the subject." R. Norberg. Metrika, Heidelberg




Poisson Processes


Book Description

In the theory of random processes there are two that are fundamental, and occur over and over again, often in surprising ways. There is a real sense in which the deepest results are concerned with their interplay. One, the Bachelier Wiener model of Brownian motion, has been the subject of many books. The other, the Poisson process, seems at first sight humbler and less worthy of study in its own right. Nearly every book mentions it, but most hurry past to more general point processes or Markov chains. This comparative neglect is ill judged, and stems from a lack of perception of the real importance of the Poisson process. This distortion partly comes about from a restriction to one dimension, while the theory becomes more natural in more general context. This book attempts to redress the balance. It records Kingman's fascination with the beauty and wide applicability of Poisson processes in one or more dimensions. The mathematical theory is powerful, and a few key results often produce surprising consequences.




Lectures on Risk Theory


Book Description

Twenty-five years ago, Hans Blihlmann published his famous monograph Mathe matical Methods in Risk Theory in the series Grundlehren der Mathematischen Wis8enschaften and thus established nonlife actuarial mathematics as a recognized subject of probability theory and statistics with a glance towards economics. This book was my guide to the subject when I gave my first course on nonlife actuarial mathematics in Summer 1988, but at the same time I tried to incorporate into my lectures parts of the rapidly growing literature in this area which to a large extent was inspired by Blihlmann's book. The present book is entirely devoted to a single topic of risk theory: Its subject is the development in time of a fixed portfolio of risks. The book thus concentrates on the claim number process and its relatives, the claim arrival process, the aggregate claims process, the risk process, and the reserve process. Particular emphasis is laid on characterizations of various classes of claim number processes, which provide alternative criteria for model selection, and on their relation to the trinity of the binomial, Poisson, and negativebinomial distributions. Special attention is also paid to the mixed Poisson process, which is a useful model in many applications, to the problems of thinning, decomposition, and superposition of risk processe8, which are important with regard to reinsurance, and to the role of martingales, which occur in a natural way in canonical situations.




Introductory Lectures on Fluctuations of Lévy Processes with Applications


Book Description

This textbook forms the basis of a graduate course on the theory and applications of Lévy processes, from the perspective of their path fluctuations. The book aims to be mathematically rigorous while still providing an intuitive feel for underlying principles. The results and applications often focus on the case of Lévy processes with jumps in only one direction, for which recent theoretical advances have yielded a higher degree of mathematical transparency and explicitness.




Combinatorial Stochastic Processes


Book Description

The purpose of this text is to bring graduate students specializing in probability theory to current research topics at the interface of combinatorics and stochastic processes. There is particular focus on the theory of random combinatorial structures such as partitions, permutations, trees, forests, and mappings, and connections between the asymptotic theory of enumeration of such structures and the theory of stochastic processes like Brownian motion and Poisson processes.




Random Processes for Engineers


Book Description

This engaging introduction to random processes provides students with the critical tools needed to design and evaluate engineering systems that must operate reliably in uncertain environments. A brief review of probability theory and real analysis of deterministic functions sets the stage for understanding random processes, whilst the underlying measure theoretic notions are explained in an intuitive, straightforward style. Students will learn to manage the complexity of randomness through the use of simple classes of random processes, statistical means and correlations, asymptotic analysis, sampling, and effective algorithms. Key topics covered include: • Calculus of random processes in linear systems • Kalman and Wiener filtering • Hidden Markov models for statistical inference • The estimation maximization (EM) algorithm • An introduction to martingales and concentration inequalities. Understanding of the key concepts is reinforced through over 100 worked examples and 300 thoroughly tested homework problems (half of which are solved in detail at the end of the book).




Lectures on Probability Theory


Book Description

This book contains two of the three lectures given at the Saint-Flour Summer School of Probability Theory during the period August 18 to September 4, 1993.