Let’s Measure It


Book Description

How tall are you? How big is your smile? How many ingredients do you need for your favorite recipe? Measuring things is important! This entertaining book shows students how to measure all sorts of things through fun and educational games and activities. Brightly colored illustrations help them follow along while easy instructions guide them through each activity.




Let's Measure It!


Book Description

Linear measurement in standard units starts with a one-inch fish and progresses to a six-inch fish, measuring everything else along the way.




Let's Be Kids and Measure Liquids!


Book Description

Introduces the science concept of measuring liquids through the use of simple rebus sentences, a rhyming story, and everyday examples. Includes a glossary.




Probability Theory and Applications


Book Description

Probability theory and its applications represent a discipline of fun damental importance to nearly all people working in the high-tech nology world that surrounds us. There is increasing awareness that we should ask not "Is it so?" but rather "What is the probability that it is so?" As a result, most colleges and universities require a course in mathematical probability to be given as part of the undergraduate training of all scientists, engineers, and mathematicians. This book is a text for a first course in the mathematical theory of probability for undergraduate students who have the prerequisite of at least two, and better three, semesters of calculus. In particular, the student must have a good working knowledge of power series expan sions and integration. Moreover, it would be helpful if the student has had some previous exposure to elementary probability theory, either in an elementary statistics course or a finite mathematics course in high school or college. If these prerequisites are met, then a good part of the material in this book can be covered in a semester (IS-week) course that meets three hours a week.




Research Topics in Analysis, Volume I


Book Description

This book, which is the first of two volumes, presents, in a unique way, some of the most relevant research tools of modern analysis. This work empowers young researchers with all the necessary techniques to explore the various subfields of this broad subject, and introduces relevant frameworks where these tools can be immediately deployed. Volume I starts with the foundations of modern analysis. The first three chapters are devoted to topology, measure theory, and functional analysis. Chapter 4 offers a comprehensive analysis of the main function spaces, while Chapter 5 covers more concrete subjects, like multivariate analysis, which are closely related to applications and more difficult to find in compact form. Chapter 6 deals with smooth and non-smooth calculus of functions; Chapter 7 introduces certain important classes of nonlinear operators; and Chapter 8 complements the previous three chapters with topics of variational analysis. Each chapter of this volume finishes with a list of problems – handy for understanding and self-study – and historical notes that give the reader a more vivid picture of how the theory developed. Volume II consists of various applications using the tools and techniques developed in this volume. By offering a clear and wide picture of the tools and applications of modern analysis, this work can be of great benefit not only to mature graduate students seeking topics for research, but also to experienced researchers with an interest in this vast and rich field of mathematics.




Refinement Monoids, Equidecomposability Types, and Boolean Inverse Semigroups


Book Description

Adopting a new universal algebraic approach, this book explores and consolidates the link between Tarski's classical theory of equidecomposability types monoids, abstract measure theory (in the spirit of Hans Dobbertin's work on monoid-valued measures on Boolean algebras) and the nonstable K-theory of rings. This is done via the study of a monoid invariant, defined on Boolean inverse semigroups, called the type monoid. The new techniques contrast with the currently available topological approaches. Many positive results, but also many counterexamples, are provided.




Let's Get Metric! Measuring Mass, Volume, Length and Temperature | Metric Conversions | Grade 6-8 Life Science


Book Description

Explore the world of measurements with this essential guide, perfect for middle school educators. Learn about the metric system, the universal language of science, detailing its units for mass, volume, length, and temperature. This resource simplifies metric conversions, offering clear explanations and practical tips for accurate measurements. Learn how to seamlessly convert between different metric units and understand the importance of precision in scientific inquiry. Equip your students with the skills to measure and convert like scientists, enhancing their understanding and appreciation of the metric system's role in global research. Empower your classroom with this comprehensive measurement companion.




Introduction to Differentiable Manifolds


Book Description

This text presents basic concepts in the modern approach to differential geometry. Topics include Euclidean spaces, submanifolds, and abstract manifolds; fundamental concepts of Lie theory; fiber bundles; and multilinear algebra. 1963 edition.




Analysis, Geometry and Probability


Book Description

This book is a collection of expository articles by well-known mathematicians. Some of them introduce the reader to a major topic, while others provide a glimpse into an active field of research. All articles are accessible to graduate students. The articles were invited in honour of K. R. Parthasarathy, a mathematican, teacher and expositor of renown. Some of the articles, by his coworkers, are related to his work on probability, quantum probability and group representations. Others are on diverse topics in analysis, geometry and number theory.




Theorems and Problems in Functional Analysis


Book Description

Even the simplest mathematical abstraction of the phenomena of reality the real line-can be regarded from different points of view by different mathematical disciplines. For example, the algebraic approach to the study of the real line involves describing its properties as a set to whose elements we can apply" operations," and obtaining an algebraic model of it on the basis of these properties, without regard for the topological properties. On the other hand, we can focus on the topology of the real line and construct a formal model of it by singling out its" continuity" as a basis for the model. Analysis regards the line, and the functions on it, in the unity of the whole system of their algebraic and topological properties, with the fundamental deductions about them obtained by using the interplay between the algebraic and topological structures. The same picture is observed at higher stages of abstraction. Algebra studies linear spaces, groups, rings, modules, and so on. Topology studies structures of a different kind on arbitrary sets, structures that give mathe matical meaning to the concepts of a limit, continuity, a neighborhood, and so on. Functional analysis takes up topological linear spaces, topological groups, normed rings, modules of representations of topological groups in topological linear spaces, and so on. Thus, the basic object of study in functional analysis consists of objects equipped with compatible algebraic and topological structures.