Leukemia Stem Cells


Book Description




Leukemia Stem Cells


Book Description

The detailed volume aims to provide a comprehensive hands-on manual covering all the techniques involved in the cellular and molecular identification and characterization of both normal hematopoietic and leukemic stem cells, both from human patients and from mouse models of human leukemia. The book also covers the most frequently used experimental approaches for the generation of such stem cell-based models of human leukemia. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and comprehensive, Leukemia Stem Cells: Methods and Protocols serves as an ideal guide for researchers, both expert and novice, seeking to further our knowledge of this vital avenue of cancer research.




Innovative Medicine


Book Description

This book is devoted to innovative medicine, comprising the proceedings of the Uehara Memorial Foundation Symposium 2014. It remains extremely rare for the findings of basic research to be developed into clinical applications, and it takes a long time for the process to be achieved. The task of advancing the development of basic research into clinical reality lies with translational science, yet the field seems to struggle to find a way to move forward. To create innovative medical technology, many steps need to be taken: development and analysis of optimal animal models of human diseases, elucidation of genomic and epidemiological data, and establishment of “proof of concept”. There is also considerable demand for progress in drug research, new surgical procedures, and new clinical devices and equipment. While the original research target may be rare diseases, it is also important to apply those findings more broadly to common diseases. The book covers a wide range of topics and is organized into three complementary parts. The first part is basic research for innovative medicine, the second is translational research for innovative medicine, and the third is new technology for innovative medicine. This book helps to understand innovative medicine and to make progress in its realization.




Stem Cells Handbook


Book Description

This book discusses critical areas of progress in stem cell research, including the most recent research and applications of pluripotent embryonic cells, induced pluripotent cells, oligopotent tissue stem cells and cancer stem cells. The text covers basic knowledge of stem cell biology, stem cell ethics, development of techniques for applying stem cell therapy, the technology of obtaining appropriate cells for transplantation as well as the role of stem cells in cancer and how therapy may be directed to cancer stem cells. This new volume is essential reading for all scientists currently in the field or allied research areas, and those for those graduate students who envision a career in stem cells.




Stem Cells and the Future of Regenerative Medicine


Book Description

Recent scientific breakthroughs, celebrity patient advocates, and conflicting religious beliefs have come together to bring the state of stem cell researchâ€"specifically embryonic stem cell researchâ€"into the political crosshairs. President Bush's watershed policy statement allows federal funding for embryonic stem cell research but only on a limited number of stem cell lines. Millions of Americans could be affected by the continuing political debate among policymakers and the public. Stem Cells and the Future of Regenerative Medicine provides a deeper exploration of the biological, ethical, and funding questions prompted by the therapeutic potential of undifferentiated human cells. In terms accessible to lay readers, the book summarizes what we know about adult and embryonic stem cells and discusses how to go about the transition from mouse studies to research that has therapeutic implications for people. Perhaps most important, Stem Cells and the Future of Regenerative Medicine also provides an overview of the moral and ethical problems that arise from the use of embryonic stem cells. This timely book compares the impact of public and private research funding and discusses approaches to appropriate research oversight. Based on the insights of leading scientists, ethicists, and other authorities, the book offers authoritative recommendations regarding the use of existing stem cell lines versus new lines in research, the important role of the federal government in this field of research, and other fundamental issues.




Hematopoiesis


Book Description

Hematopoiesis, or the process of blood formation, has been extensively studied at both basic and clinical levels. Human diseases such as thalassemia, immunodeficiency, and leukemia represent defects in this process. Approaches to treat these disorders have required a basic understanding of the biology of blood cells. For instance, hemapoietic stem cell replacement or bone marrow transplantation has been used to ameliorate disease. This volume focuses on hematopoiesis at a cellular and molecular level, and establishes the basis for clinical manipulation of hematopoietic cells for therapeutic benefit. In Part I, the cellular characteristics of progenitors and stem cells are explored. Emphasis is placed on purification of stem cells and both in vitro and in vivo assays. The regulation of normal and leukemis stem cells is illustrated. An excellent discussion of potential use of these cells for gene therapy concludes this section. Hemapoiesis is easily studied during embryogenesis. Part II develops the concept of the waves of hemapoiesis during development. Comparative hematology is making a major comeback as a field in the 1990's. One hope is that general principles of hematopoiesis will be established by studying many models and systems. Part III delves into critical factors that regulate hematopoiesis, including both intracellular and extracellular signals. Part IV and V describe lineage programs for myeloid and lymphoid lineages. These chapters are meant to be illustrative of the different cell fates, but are not exhaustive. Part VI examines the genetics of hematopoisis, particularly in animal models. The hematopoietic system is in constant contact with stromal cells and endothelial cells during development and in the adult. Evidence suggests that endothelial cells and blood cells may arise from a common progenitor, the hemangioblast. Part VII and VIII discuss the stromal and endothelial cells with the emphasis on their interaction with hematopoietic cells.




Allogeneic Stem Cell Transplantation


Book Description

Since the original publication of Allogeneic Stem Cell Transplantation: Clinical Research and Practice, Allogeneic hematopoietic stem cell transplantation (HSC) has undergone several fast-paced changes. In this second edition, the editors have focused on topics relevant to evolving knowledge in the field in order to better guide clinicians in decision-making and management of their patients, as well as help lead laboratory investigators in new directions emanating from clinical observations. Some of the most respected clinicians and scientists in this discipline have responded to the recent advances in the field by providing state-of-the-art discussions addressing these topics in the second edition. The text covers the scope of human genomic variation, the methods of HLA typing and interpretation of high-resolution HLA results. Comprehensive and up-to-date, Allogeneic Stem Cell Transplantation: Clinical Research and Practice, Second Edition offers concise advice on today's best clinical practice and will be of significant benefit to all clinicians and researchers in allogeneic HSC transplantation.




EBMT HANDBOOK


Book Description




Holland-Frei Cancer Medicine


Book Description

Holland-Frei Cancer Medicine, Ninth Edition, offers a balanced view of the most current knowledge of cancer science and clinical oncology practice. This all-new edition is the consummate reference source for medical oncologists, radiation oncologists, internists, surgical oncologists, and others who treat cancer patients. A translational perspective throughout, integrating cancer biology with cancer management providing an in depth understanding of the disease An emphasis on multidisciplinary, research-driven patient care to improve outcomes and optimal use of all appropriate therapies Cutting-edge coverage of personalized cancer care, including molecular diagnostics and therapeutics Concise, readable, clinically relevant text with algorithms, guidelines and insight into the use of both conventional and novel drugs Includes free access to the Wiley Digital Edition providing search across the book, the full reference list with web links, illustrations and photographs, and post-publication updates




Hematopoietic Stem Cell Biology


Book Description

In the summer of 1988, my developmental biology professor announced to the class that hematopoietic stem cells (HSCs) had finally been purified. Somehow, I never forgot the professor’s words. When I started working in Dr. Irv Weissman’s labo- tory at Stanford as a postdoctoral fellow, I realized that the findings mentioned by the professor were from Weissman’s laboratory and had been published in a 1988 edition of the journal Science. It has been over 20 years since the publication of that seminal paper, and since then tremendous advances in understanding the biology and maturation of HSCs, namely the process of hematopoiesis, which includes lymphocyte development, have been made. These discoveries were made possible in part by advancements in technology. For example, recent availability of user friendly fluorescence activated cell sorting (FACS) machines and monoclonal an- bodies with a variety of fluorescent labels has allowed more scientists to sort and analyze rare populations in the bone marrow, such as HSCs. All classes of hematopoietic cells are derived from HSCs. Stem cell biology draws enormous attention not only from scientists, but also from ordinary people because of the tremendous potential for development of new therapeutic application to diseases that currently lack any type of effective therapy. Thus, this type of “regenerative medicine” is a relatively new and attractive field in both basic science and clinical medicine.