Lie-Backlund Transformations in Applications


Book Description

This title presents an introduction to the classical treatment of Backlund and general surface transformations; and includes detailed and accessible techniques for constructing both groups of tranformations which will be of great value to the scientist and engineer in the analysis of mathematical models of physical phenomena. Classical and recent examples of Backlund transformations as applied to geometry, nonlinear optics, turbulence models, nonlinear waves and quantum mechanics are given. The authors discuss applications of Lie-Backlund transformations in mechanics, quantum mechanics, gas dynamics, hydrodynamics, and relativity.




Lie-Backlund Transformations in Applications


Book Description

This title presents an introduction to the classical treatment of Backlund and general surface transformations; and includes detailed and accessible techniques for constructing both groups of tranformations which will be of great value to the scientist and engineer in the analysis of mathematical models of physical phenomena. Classical and recent examples of Backlund transformations as applied to geometry, nonlinear optics, turbulence models, nonlinear waves and quantum mechanics are given. The authors discuss applications of Lie-Backlund transformations in mechanics, quantum mechanics, gas dynamics, hydrodynamics, and relativity.




Bäcklund and Darboux Transformations


Book Description

This book explores the deep and fascinating connections that exist between a ubiquitous class of physically important waves known as solitons and the theory of transformations of a privileged class of surfaces as they were studied by eminent geometers of the nineteenth century. Thus, nonlinear equations governing soliton propagation and also mathematical descriptions of their remarkable interaction properties are shown to arise naturally out of the classical differential geometry of surfaces and what are termed Bäcklund-Darboux transformations.This text, the first of its kind, is written in a straightforward manner and is punctuated by exercises to test the understanding of the reader. It is suitable for use in higher undergraduate or graduate level courses directed at applied mathematicians or mathematical physics.










Transformation Groups Applied to Mathematical Physics


Book Description

Approach your problems from the right It isn't that they can't see the solution. end and begin with the answers. Then It is that they can't see the problem. one day, perhaps you will find the final question. G.K. Chesterton. The Scandal of Father Brown 'The Point of a Pin'. 'The Hermit Clad in Crane Feathers' in R.van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in - gional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in pack ing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.




CRC Handbook of Lie Group Analysis of Differential Equations


Book Description

Today Lie group theoretical approach to differential equations has been extended to new situations and has become applicable to the majority of equations that frequently occur in applied sciences. Newly developed theoretical and computational methods are awaiting application. Students and applied scientists are expected to understand these methods. Volume 3 and the accompanying software allow readers to extend their knowledge of computational algebra. Written by the world's leading experts in the field, this up-to-date sourcebook covers topics such as Lie-Bäcklund, conditional and non-classical symmetries, approximate symmetry groups for equations with a small parameter, group analysis of differential equations with distributions, integro-differential equations, recursions, and symbolic software packages. The text provides an ideal introduction to the modern group analysis and addresses issues to both beginners and experienced researchers in the application of Lie group methods.




CRC Handbook of Lie Group Analysis of Differential Equations, Volume I


Book Description

Today Lie group theoretical approach to differential equations has been extended to new situations and has become applicable to the majority of equations that frequently occur in applied sciences. Newly developed theoretical and computational methods are awaiting application. Students and applied scientists are expected to understand these methods. Volume 3 and the accompanying software allow readers to extend their knowledge of computational algebra. Written by the world's leading experts in the field, this up-to-date sourcebook covers topics such as Lie-Bäcklund, conditional and non-classical symmetries, approximate symmetry groups for equations with a small parameter, group analysis of differential equations with distributions, integro-differential equations, recursions, and symbolic software packages. The text provides an ideal introduction to the modern group analysis and addresses issues to both beginners and experienced researchers in the application of Lie group methods.




Introduction to Symmetry Analysis


Book Description

Symmetry analysis based on Lie group theory is the most important method for solving nonlinear problems aside from numerical computation. The method can be used to find the symmetries of almost any system of differential equations and the knowledge of these symmetries can be used to reduce the complexity of physical problems governed by the equations. This is a broad, self-contained, introduction to the basics of symmetry analysis for first and second year graduate students in science, engineering and applied mathematics. Mathematica-based software for finding the Lie point symmetries and Lie-Bäcklund symmetries of differential equations is included on a CD along with more than forty sample notebooks illustrating applications ranging from simple, low order, ordinary differential equations to complex systems of partial differential equations. MathReader 4.0 is included to let the user read the sample notebooks and follow the procedure used to find symmetries.




Handbook of Differential Equations


Book Description

Handbook of Differential Equations, Second Edition is a handy reference to many popular techniques for solving and approximating differential equations, including numerical methods and exact and approximate analytical methods. Topics covered range from transformations and constant coefficient linear equations to Picard iteration, along with conformal mappings and inverse scattering. Comprised of 192 chapters, this book begins with an introduction to transformations as well as general ideas about differential equations and how they are solved, together with the techniques needed to determine if a partial differential equation is well-posed or what the "natural" boundary conditions are. Subsequent sections focus on exact and approximate analytical solution techniques for differential equations, along with numerical methods for ordinary and partial differential equations. This monograph is intended for students taking courses in differential equations at either the undergraduate or graduate level, and should also be useful for practicing engineers or scientists who solve differential equations on an occasional basis.