Lie Groupoids and Lie Algebroids in Differential Geometry


Book Description

This book provides a striking synthesis of the standard theory of connections in principal bundles and the Lie theory of Lie groupoids. The concept of Lie groupoid is a little-known formulation of the concept of principal bundle and corresponding to the Lie algebra of a Lie group is the concept of Lie algebroid: in principal bundle terms this is the Atiyah sequence. The author's viewpoint is that certain deep problems in connection theory are best addressed by groupoid and Lie algebroid methods. After preliminary chapters on topological groupoids, the author gives the first unified and detailed account of the theory of Lie groupoids and Lie algebroids. He then applies this theory to the cohomology of Lie algebroids, re-interpreting connection theory in cohomological terms, and giving criteria for the existence of (not necessarily Riemannian) connections with prescribed curvature form. This material, presented in the last two chapters, is work of the author published here for the first time. This book will be of interest to differential geometers working in general connection theory and to researchers in theoretical physics and other fields who make use of connection theory.




Lie Groupoids and Lie Algebroids in Differential Geometry


Book Description

This book provides a striking synthesis of the standard theory of connections in principal bundles and the Lie theory of Lie groupoids. The concept of Lie groupoid is a little-known formulation of the concept of principal bundle and corresponding to the Lie algebra of a Lie group is the concept of Lie algebroid: in principal bundle terms this is the Atiyah sequence. The author's viewpoint is that certain deep problems in connection theory are best addressed by groupoid and Lie algebroid methods. After preliminary chapters on topological groupoids, the author gives the first unified and detailed account of the theory of Lie groupoids and Lie algebroids. He then applies this theory to the cohomology of Lie algebroids, re-interpreting connection theory in cohomological terms, and giving criteria for the existence of (not necessarily Riemannian) connections with prescribed curvature form. This material, presented in the last two chapters, is work of the author published here for the first time. This book will be of interest to differential geometers working in general connection theory and to researchers in theoretical physics and other fields who make use of connection theory.




General Theory of Lie Groupoids and Lie Algebroids


Book Description

This a comprehensive modern account of the theory of Lie groupoids and Lie algebroids, and their importance in differential geometry, in particular their relations with Poisson geometry andgeneral connection theory. It covers much work done since the mid 1980s including the first treatment in book form of Poisson groupoids, Lie bialgebroids and double vector bundles. As such, this book will be of great interest to all those working in or wishing to learn the modern theory of Lie groupoids and Lie algebroids.




Lie Groupoids and Lie Algebroids in Differential Geometry


Book Description

This book provides a striking synthesis of the standard theory of connections in principal bundles and the Lie theory of Lie groupoids. The concept of Lie groupoid is a little-known formulation of the concept of principal bundle and corresponding to the Lie algebra of a Lie group is the concept of Lie algebroid: in principal bundle terms this is the Atiyah sequence. The author's viewpoint is that certain deep problems in connection theory are best addressed by groupoid and Lie algebroid methods. After preliminary chapters on topological groupoids, the author gives the first unified and detailed account of the theory of Lie groupoids and Lie algebroids. He then applies this theory to the cohomology of Lie algebroids, re-interpreting connection theory in cohomological terms, and giving criteria for the existence of (not necessarily Riemannian) connections with prescribed curvature form. This material, presented in the last two chapters, is work of the author published here for the first time. This book will be of interest to differential geometers working in general connection theory and to researchers in theoretical physics and other fields who make use of connection theory.




General Theory of Lie Groupoids and Lie Algebroids


Book Description

This a comprehensive modern account of the theory of Lie groupoids and Lie algebroids, and their importance in differential geometry, in particular their relations with Poisson geometry and general connection theory. It covers much work done since the mid 1980s including the first treatment in book form of Poisson groupoids, Lie bialgebroids and double vector bundles, as well as a revised account of the relations between locally trivial Lie groupoids, Atiyah sequences, and connections in principal bundles. As such, this book will be of great interest to all those concerned with the use of Poisson geometry as a semi-classical limit of quantum geometry, as well as to all those working in or wishing to learn the modern theory of Lie groupoids and Lie algebroids.




Cartan Geometries and their Symmetries


Book Description

In this book we first review the ideas of Lie groupoid and Lie algebroid, and the associated concepts of connection. We next consider Lie groupoids of fibre morphisms of a fibre bundle, and the connections on such groupoids together with their symmetries. We also see how the infinitesimal approach, using Lie algebroids rather than Lie groupoids, and in particular using Lie algebroids of vector fields along the projection of the fibre bundle, may be of benefit. We then introduce Cartan geometries, together with a number of tools we shall use to study them. We take, as particular examples, the four classical types of geometry: affine, projective, Riemannian and conformal geometry. We also see how our approach can start to fit into a more general theory. Finally, we specialize to the geometries (affine and projective) associated with path spaces and geodesics, and consider their symmetries and other properties.




Introduction to Foliations and Lie Groupoids


Book Description

This book gives a quick introduction to the theory of foliations and Lie groupoids. It is based on the authors' extensive teaching experience and contains numerous examples and exercises making it ideal either for independent study or as the basis of a graduate course.




Hamiltonian Lie Algebroids


Book Description

View the abstract.




Material Geometry: Groupoids In Continuum Mechanics


Book Description

This monograph is the first in which the theory of groupoids and algebroids is applied to the study of the properties of uniformity and homogeneity of continuous media. It is a further step in the application of differential geometry to the mechanics of continua, initiated years ago with the introduction of the theory of G-structures, in which the group G denotes the group of material symmetries, to study smoothly uniform materials.The new approach presented in this book goes much further by being much more general. It is not a generalization per se, but rather a natural way of considering the algebraic-geometric structure induced by the so-called material isomorphisms. This approach has allowed us to encompass non-uniform materials and discover new properties of uniformity and homogeneity that certain material bodies can possess, thus opening a new area in the discipline.




Introduction to Foliations and Lie Groupoids


Book Description

This book gives a quick introduction to the theory of foliations, Lie groupoids and Lie algebroids. An important feature is the emphasis on the interplay between these concepts: Lie groupoids form an indispensable tool to study the transverse structure of foliations as well as their noncommutative geometry, while the theory of foliations has immediate applications to the Lie theory of groupoids and their infinitesimal algebroids. The book starts with a detailed presentation of the main classical theorems in the theory of foliations then proceeds to Molino's theory, Lie groupoids, constructing the holonomy groupoid of a foliation and finally Lie algebroids. Among other things, the authors discuss to what extent Lie's theory for Lie groups and Lie algebras holds in the more general context of groupoids and algebroids. Based on the authors' extensive teaching experience, this book contains numerous examples and exercises making it ideal for graduate students and their instructors.