Book Description
A self-contained introduction to the cohomology theory of Lie groups and some of its applications in physics.
Author : Josi A. de Azcárraga
Publisher : Cambridge University Press
Page : 480 pages
File Size : 13,53 MB
Release : 1998-08-06
Category : Mathematics
ISBN : 9780521597005
A self-contained introduction to the cohomology theory of Lie groups and some of its applications in physics.
Author : Anthony W. Knapp
Publisher : Princeton University Press
Page : 522 pages
File Size : 16,71 MB
Release : 1988-05-21
Category : Mathematics
ISBN : 069108498X
This book starts with the elementary theory of Lie groups of matrices and arrives at the definition, elementary properties, and first applications of cohomological induction, which is a recently discovered algebraic construction of group representations. Along the way it develops the computational techniques that are so important in handling Lie groups. The book is based on a one-semester course given at the State University of New York, Stony Brook in fall, 1986 to an audience having little or no background in Lie groups but interested in seeing connections among algebra, geometry, and Lie theory. These notes develop what is needed beyond a first graduate course in algebra in order to appreciate cohomological induction and to see its first consequences. Along the way one is able to study homological algebra with a significant application in mind; consequently one sees just what results in that subject are fundamental and what results are minor.
Author : Anthony W. Knapp
Publisher : Princeton University Press
Page : 526 pages
File Size : 41,72 MB
Release : 2021-01-12
Category : Mathematics
ISBN : 0691223807
This book starts with the elementary theory of Lie groups of matrices and arrives at the definition, elementary properties, and first applications of cohomological induction, which is a recently discovered algebraic construction of group representations. Along the way it develops the computational techniques that are so important in handling Lie groups. The book is based on a one-semester course given at the State University of New York, Stony Brook in fall, 1986 to an audience having little or no background in Lie groups but interested in seeing connections among algebra, geometry, and Lie theory. These notes develop what is needed beyond a first graduate course in algebra in order to appreciate cohomological induction and to see its first consequences. Along the way one is able to study homological algebra with a significant application in mind; consequently one sees just what results in that subject are fundamental and what results are minor.
Author : D B Fuks
Publisher :
Page : 352 pages
File Size : 26,17 MB
Release : 1986-12-31
Category :
ISBN : 9781468487664
Author : Alexander A. Kirillov
Publisher : Cambridge University Press
Page : 237 pages
File Size : 33,46 MB
Release : 2008-07-31
Category : Mathematics
ISBN : 0521889693
This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.
Author : Daniel Bump
Publisher : Springer Science & Business Media
Page : 532 pages
File Size : 24,19 MB
Release : 2013-10-01
Category : Mathematics
ISBN : 1461480248
This book is intended for a one-year graduate course on Lie groups and Lie algebras. The book goes beyond the representation theory of compact Lie groups, which is the basis of many texts, and provides a carefully chosen range of material to give the student the bigger picture. The book is organized to allow different paths through the material depending on one's interests. This second edition has substantial new material, including improved discussions of underlying principles, streamlining of some proofs, and many results and topics that were not in the first edition. For compact Lie groups, the book covers the Peter–Weyl theorem, Lie algebra, conjugacy of maximal tori, the Weyl group, roots and weights, Weyl character formula, the fundamental group and more. The book continues with the study of complex analytic groups and general noncompact Lie groups, covering the Bruhat decomposition, Coxeter groups, flag varieties, symmetric spaces, Satake diagrams, embeddings of Lie groups and spin. Other topics that are treated are symmetric function theory, the representation theory of the symmetric group, Frobenius–Schur duality and GL(n) × GL(m) duality with many applications including some in random matrix theory, branching rules, Toeplitz determinants, combinatorics of tableaux, Gelfand pairs, Hecke algebras, the "philosophy of cusp forms" and the cohomology of Grassmannians. An appendix introduces the reader to the use of Sage mathematical software for Lie group computations.
Author : Shrawan Kumar
Publisher : Springer Science & Business Media
Page : 630 pages
File Size : 46,92 MB
Release : 2002-09-10
Category : Mathematics
ISBN : 9780817642273
"Most of these topics appear here for the first time in book form. Many of them are interesting even in the classical case of semi-simple algebraic groups. Some appendices recall useful results from other areas, so the work may be considered self-contained, although some familiarity with semi-simple Lie algebras or algebraic groups is helpful. It is clear that this book is a valuable reference for all those interested in flag varieties and representation theory in the semi-simple or Kac-Moody case." —MATHEMATICAL REVIEWS "A lot of different topics are treated in this monumental work. . . . many of the topics of the book will be useful for those only interested in the finite-dimensional case. The book is self contained, but is on the level of advanced graduate students. . . . For the motivated reader who is willing to spend considerable time on the material, the book can be a gold mine. " —ZENTRALBLATT MATH
Author : William Fulton
Publisher : Springer Science & Business Media
Page : 616 pages
File Size : 12,50 MB
Release : 1991
Category : Mathematics
ISBN : 9780387974958
Introducing finite-dimensional representations of Lie groups and Lie algebras, this example-oriented book works from representation theory of finite groups, through Lie groups and Lie algrbras to the finite dimensional representations of the classical groups.
Author : Frank W. Warner
Publisher : Springer Science & Business Media
Page : 283 pages
File Size : 12,90 MB
Release : 2013-11-11
Category : Mathematics
ISBN : 1475717997
Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.
Author : Neelacanta Sthanumoorthy
Publisher : Academic Press
Page : 514 pages
File Size : 17,40 MB
Release : 2016-04-26
Category : Mathematics
ISBN : 012804683X
Lie superalgebras are a natural generalization of Lie algebras, having applications in geometry, number theory, gauge field theory, and string theory. Introduction to Finite and Infinite Dimensional Lie Algebras and Superalgebras introduces the theory of Lie superalgebras, their algebras, and their representations. The material covered ranges from basic definitions of Lie groups to the classification of finite-dimensional representations of semi-simple Lie algebras. While discussing all classes of finite and infinite dimensional Lie algebras and Lie superalgebras in terms of their different classes of root systems, the book focuses on Kac-Moody algebras. With numerous exercises and worked examples, it is ideal for graduate courses on Lie groups and Lie algebras. - Discusses the fundamental structure and all root relationships of Lie algebras and Lie superalgebras and their finite and infinite dimensional representation theory - Closely describes BKM Lie superalgebras, their different classes of imaginary root systems, their complete classifications, root-supermultiplicities, and related combinatorial identities - Includes numerous tables of the properties of individual Lie algebras and Lie superalgebras - Focuses on Kac-Moody algebras