Photonic Integration and Photonics-Electronics Convergence on Silicon Platform


Book Description

Silicon photonics technology, which has the DNA of silicon electronics technology, promises to provide a compact photonic integration platform with high integration density, mass-producibility, and excellent cost performance. This technology has been used to develop and to integrate various photonic functions on silicon substrate. Moreover, photonics-electronics convergence based on silicon substrate is now being pursued. Thanks to these features, silicon photonics will have the potential to be a superior technology used in the construction of energy-efficient cost-effective apparatuses for various applications, such as communications, information processing, and sensing. Considering the material characteristics of silicon and difficulties in microfabrication technology, however, silicon by itself is not necessarily an ideal material. For example, silicon is not suitable for light emitting devices because it is an indirect transition material. The resolution and dynamic range of silicon-based interference devices, such as wavelength filters, are significantly limited by fabrication errors in microfabrication processes. For further performance improvement, therefore, various assisting materials, such as indium-phosphide, silicon-nitride, germanium-tin, are now being imported into silicon photonics by using various heterogeneous integration technologies, such as low-temperature film deposition and wafer/die bonding. These assisting materials and heterogeneous integration technologies would also expand the application field of silicon photonics technology. Fortunately, silicon photonics technology has superior flexibility and robustness for heterogeneous integration. Moreover, along with photonic functions, silicon photonics technology has an ability of integration of electronic functions. In other words, we are on the verge of obtaining an ultimate technology that can integrate all photonic and electronic functions on a single Si chip. This e-Book aims at covering recent developments of the silicon photonic platform and novel functionalities with heterogeneous material integrations on this platform.




Overall Aspects of Non-Traditional Glasses: Synthesis, Properties and Applications


Book Description

The considerable proliferation of new glasses during the second half of the 20th century (germanate, vanadate, bismuthate, tellurite, chalchogenide glasses, etc.) brought about the use the plural form of the 4 generic glass denomination, in order to be able to index each emerging glass family by its proper name, as well as to classify them methodically. Together with its great compositional versatility, the peculiar characteristics of glass (non-crystalline structure with short-range order, continuous network with no intergranular boundaries, isotropy, easy to be formed into a plastic state inside a wide temperature range) allow for a freedom of design and adaptability that few materials are able to offer. All these circumstances have contributed to the fact that, in the last seventy years, glass has acquired the multiple and varied appearance of its new families, without losing neither its original image nor its soda-lime-silica traditional composition, destined for the huge industrial manufacture of its conventional products.




Micro- and Nanophotonic Technologies


Book Description

Edited and authored by leading experts from top institutions in Europe, the US and Asia, this comprehensive overview of micro- and nanophotonics covers the physical and chemical fundamentals, while clearly focusing on the technologies and applications in industrial R&D. As such, the book reports on the four main areas of telecommunications and display technologies; light conversion and energy generation; light-based fabrication of materials; and micro- and nanophotonic devices in metrology and control.




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.




2D Semiconducting Materials for Electronic, Photonic, and Optoelectronic Devices


Book Description

Two-dimensional semiconducting materials (2D-SCMs) are the subject of intensive study in the fields of photonics and optoelectronics because of their unusual optical, electrical, thermal, and mechanical properties. The main objective of 2D Semiconducting Materials for Electronic, Photonic, and Optoelectronic Devices is to provide current, state-of-the-art knowledge of two-dimensional semiconducting materials for various applications. Two-dimensional semiconducting materials are the basic building blocks for making photodiodes, light-emitting diodes, light-detecting devices, data storage, telecommunications, and energy-storage devices. When it comes to two-dimensional semiconducting materials, electronic, photonic, and optoelectronic applications, as well as future plans for improving performance, no modern book covers as much ground. The planned book will fill such gaps by offering a comprehensive analysis of two-dimensional semiconducting materials. This book covers a range of advanced 2D materials, their fundamentals, and the chemistry for many emerging applications. All the chapters are covered by experts in these areas around the world, making this a suitable textbook for students and providing new guidelines to researchers and industries. • Covers topics such as fundamentals and advanced knowledge of two-dimensional semiconducting materials • Provides details about the recent methods used for the synthesis, characterization, and applications of two-dimensional semiconducting materials • Covers the state-of-the-art development in two-dimensional semiconducting materials and their emerging applications This book provides directions to students, scientists, and researchers in semiconductors and related disciplines to help them better understand the physics, characteristics, and applications of 2D semiconductors.




Photonic Bandgap Structures Novel Technological Platforms for Physical, Chemical and Biological Sensing


Book Description

This E-Book covers the research and the development of a novel generation of photonic devices for sensing applications. The E-Book starts with a brief review of basic photonic crystal (PhC) structure related concepts and describes the numerical and technological tools useful in the design and fabrication of devices based on PhCs. Next, the E-Book provides a selection of crossover topics emerging in the scientific community as breaking through researches, technologies and sciences for the development of novel technological platforms for physical, chemical and biological sensing. The E-Book ends with a description of the main PhC sensors to date by representing many of the exciting sensing applications that utilize photonic crystal structures.




Organic Optoelectronics


Book Description

Written by internationally recognized experts in the field with academic as well as industrial experience, this book concisely yet systematically covers all aspects of the topic. The monograph focuses on the optoelectronic behavior of organic solids and their application in new optoelectronic devices. It covers organic field-effect and organic electroluminescent materials and devices, organic photonics, materials and devices, as well as organic solids in photo absorption and energy conversion. Much emphasis is laid on the preparation of functional materials and the fabrication of devices, from materials synthesis and purification, to physicochemical properties and the basic processes and working principles of the devices. The only book to cover fundamentals, applications, and the latest research results, this is a handy reference for both researchers and those new to the field. From the contents: * Electronic process in organic solids * Organic/polymeric semiconductors for field-effect transistors * Organic/polymeric field-effect transistors * Organic circuits and organic single molecular transistors * Polymer light-emitting Diodes (PLEDs): devices and materials * Organic solids for photonics * Organic photonic devices * Organic solar cells based on small molecules * Polymer solar cells * Dye-sensitized solar cells (DSSCs) * Organic thermoelectric power devices




Silicon-Based Material and Devices, Two-Volume Set


Book Description

This book covers a broad spectrum of the silicon-based materials and their device applications. This book provides a broad coverage of the silicon-based materials including different kinds of silicon-related materials, their processing, spectroscopic characterization, physical properties, and device applications. This two-volume set offers a selection of timely topics on silicon materials namely those that have been extensively used for applications in electronic and photonic technologies. The extensive reference provides broad coverage of silicon-based materials, including different types of silicon-related materials, their processing, spectroscopic characterization, physical properties, and device applications. Fourteen chapters review the state of the art research on silicon-based materials and their applications to devices. This reference contains a subset of articles published in AP's recently released Handbook of Advanced Electronic and Photonic Materials and Devices ( 2000, ISBN 012-5137451, ten volumes) by Dr. Hari Nalwa. This two-volume work strives to present a highly coherent coverage of silicon-based material uses in the vastly dynamic arena of silicon chip research and technology. Key Features * Covers silicon-based materials and devices * Include types of materials, their processing, fabrication, physical properties and device applications * Role of silicon-based materials in electronic and photonic technology * A very special topic presented in a timely manner and in a format




Progress in Optics


Book Description

In the 50 years since the first volume of Progress in Optics was published, optics has become one of the most dynamic fields of science. The volumes in this series that have appeared up to now contain more than 300 review articles by distinguished research workers, which have become permanent records for many important developments, helping optical scientists and optical engineers stay abreast of their fields. - Comprehensive, in-depth reviews - Edited by the leading authority in the field




Natural and Synthetic Fiber Reinforced Composites


Book Description

Natural and Synthetic Fiber Reinforced Composites Discover a comprehensive exploration of fiber reinforced polymers by an expert team of editors Fiber reinforced polymer (FRP) composites offer several unique properties that make them ideal for use in a wide range of industries, from automotive and aerospace to marine, construction, and co-industrial. In Natural and Synthetic Fiber Reinforced Composites: Synthesis, Properties and Applications, a distinguished team of mechanical engineers delivers a comprehensive overview of fiber reinforced composites. This edited volume includes thorough discussions of glass-, cotton-, and carbon-fiber reinforced materials, as well as the tribological properties and non-structural applications of synthetic fiber composites. Readers will also find practical explorations of the structural evolution, mechanical features, and future possibilities of fiber, textile, and nano-cementitious materials. The physical and chemical properties of cotton fiber-based composites are explored at length, as are the extraordinary mechanical, thermal, electrical, electronic, and field emission properties of carbon nanotubes. This singular book also includes: A thorough discussion of recent advancements in natural fiber reinforced polymer composites, their implications, and the opportunities that arise as a result A comprehensive exploration of the thermal behavior of natural fiber-based composites An insightful review of the literature on sisal fiber with polymer matrices A response to the growing research gap in the existing literature regarding natural fiber-based polymer composites and solutions to address it Perfect for scientists, engineers, professors, and students working in areas involving natural and synthetic reinforced polymers and composites, Natural and Synthetic Fiber Reinforced Composites: Synthesis, Properties and Applications offers a one-of-a-kind resource to help readers understand a critical and rapidly evolving technology.