Fast Light, Slow Light and Left-Handed Light


Book Description

The propagation of light in dispersive media is a subject of fundamental as well as practical importance. In recent years attention has focused in particular on how refractive index can vary with frequency in such a way that the group velocities of optical pulses can be much greater or much smaller than the speed of light in vacuum, or in which the refractive index can be negative. Treating these topics at an introductory to intermediate level, Fast Light, Slow Light and Left-Handed Light focuses on the basic theory and describes the significant experimental progress made during the past decade. The book pays considerable attention to the fact that superluminal group velocities are not in conflict with special relativity and to the role of quantum effects in preventing superluminal communication and violations of Einstein causality. It also explores some of the basic physics at the opposite extreme of very slow group velocities as well as stopped and regenerated light, including the concepts of electromagnetically induced transparency and dark-state polaritons. Another very active aspect of the subject discussed concerns the possibility of designing metamaterials in which the refractive index can be negative and propagating light is left-handed in the sense that the phase and group velocities are in opposite directions. The last two chapters are an introduction to some of the basic theory and consequences of negative refractive index, with emphasis on the seminal work carried out since 2000. The possibility that "perfect" lenses can be made from negative-index metamaterials-which has been perhaps the most controversial aspect of the field-is introduced and discussed in some detail.




Light Propagation in Linear Optical Media


Book Description

Light Propagation in Linear Optical Media describes light propagation in linear media by expanding on diffraction theories beyond what is available in classic optics books. In one volume, this book combines the treatment of light propagation through various media, interfaces, and apertures using scalar and vector diffraction theories. After covering the fundamentals of light and physical optics, the authors discuss light traveling within an anisotropic crystal and present mathematical models for light propagation across planar boundaries between different media. They describe the propagation of Gaussian beams and discuss various diffraction models for the propagation of light. They also explore methods for spatially confining (trapping) cold atoms within localized light-intensity patterns. This book can be used as a technical reference by professional scientists and engineers interested in light propagation and as a supplemental text for upper-level undergraduate or graduate courses in optics.




Slow Light


Book Description

One of the Top Selling Physics Books according to YBP Library Services The exotic effects of slow light have been widely observed in the laboratory. However, current literature fails to explore the wider field of slow light in photonic structures and optical fibers. Reflecting recent research, Slow Light: Science and Applications presents a comprehensive introduction to slow light and its potential applications, including storage, switching, DOD applications, and nonlinear optics. The book covers fundamentals of slow light in various media, including atomic media, semiconductors, fibers, and photonic structures. Leading authorities in such diverse fields as atomic vapor spectroscopy, fiber amplifiers, and integrated optics provide an interdisciplinary perspective. They uncover potential applications in both linear and nonlinear optics. While it is impossible to account for all the captivating developments that have occurred in the last few years, this book provides an exceptional survey of the current state of the slow light field.




Quantum Aspects of Light Propagation


Book Description

Quantum Aspects of Light Propagation provides an overview of spatio-temporal descriptions of the electromagnetic field in linear and nonlinear dielectric media, appropriate to macroscopic and microscopic theories. Readers will find an introduction to canonical quantum descriptions of light propagation in a nonlinear dispersionless dielectric medium, and an approach to linear and nonlinear dispersive dielectric media. Illustrated by optical processes, these descriptions are simplified by a transition to one-dimensional propagation. Quantum theories of light propagation in optical media are generalized from dielectric media to magnetodielectrics, in addition to a presentation of classical and nonclassical properties of radiation propagating through negative-index media. Valuable analyses of quantization in waveguides, photonic crystals, and propagation in strongly scattering media are also included, along with various optical resonator properties. The theories are utilized for the quantum electrodynamical effects to be determined in periodic dielectric structures which are known to be a basis of new schemes for lasing and a control of light field state. Quantum Aspects of Light Propagation is a valuable reference for researchers and engineers involved with general optics, quantum optics and electronics, nonlinear optics, and photonics.




Optics in Our Time


Book Description

Light and light based technologies have played an important role in transforming our lives via scientific contributions spanned over thousands of years. In this book we present a vast collection of articles on various aspects of light and its applications in the contemporary world at a popular or semi-popular level. These articles are written by the world authorities in their respective fields. This is therefore a rare volume where the world experts have come together to present the developments in this most important field of science in an almost pedagogical manner. This volume covers five aspects related to light. The first presents two articles, one on the history of the nature of light, and the other on the scientific achievements of Ibn-Haitham (Alhazen), who is broadly considered the father of modern optics. These are then followed by an article on ultrafast phenomena and the invisible world. The third part includes papers on specific sources of light, the discoveries of which have revolutionized optical technologies in our lifetime. They discuss the nature and the characteristics of lasers, Solid-state lighting based on the Light Emitting Diode (LED) technology, and finally modern electron optics and its relationship to the Muslim golden age in science. The book’s fourth part discusses various applications of optics and light in today's world, including biophotonics, art, optical communication, nanotechnology, the eye as an optical instrument, remote sensing, and optics in medicine. In turn, the last part focuses on quantum optics, a modern field that grew out of the interaction of light and matter. Topics addressed include atom optics, slow, stored and stationary light, optical tests of the foundation of physics, quantum mechanical properties of light fields carrying orbital angular momentum, quantum communication, and Wave-Particle dualism in action.




Light Propagation in Periodic Media


Book Description

Based on more than 30 years of research on differential theories of gratings, this book describes developments in differential theory for applications in spectroscopy, acoustics, X-ray instrumentation, optical communication, information processing, photolithography, high-power lasers, high-precision engineering, and astronomy. Introducing the Fast Fourier Factorization approach to improve the convergence of a truncated series, the book examines multilayers, stacked gratings, crossed gratings, photonic crystals, and isotropic and anisotropic materials; techniques and examples in grating design; and Maxwell equations in a truncated Fourier space.




Light Propagation in Linear Optical Media


Book Description

Light Propagation in Linear Optical Media describes light propagation in linear media by expanding on diffraction theories beyond what is available in classic optics books. In one volume, this book combines the treatment of light propagation through various media, interfaces, and apertures using scalar and vector diffraction theories. After covering the fundamentals of light and physical optics, the authors discuss light traveling within an anisotropic crystal and present mathematical models for light propagation across planar boundaries between different media. They describe the propagation of Gaussian beams and discuss various diffraction models for the propagation of light. They also explore methods for spatially confining (trapping) cold atoms within localized light-intensity patterns. This book can be used as a technical reference by professional scientists and engineers interested in light propagation and as a supplemental text for upper-level undergraduate or graduate courses in optics.




Progress in Optics


Book Description

Progress in Optics Volume 43.




Fast Light, Slow Light and Left-handed Light


Book Description

The propagation of light in dispersive media is a subject of fundamental as well as practical importance. In recent years attention has focused in particular on how refractive index can vary with frequency in such a way that the group velocities of optical pulses can be much greater or much smaller than the speed of light in vacuum, or in which the refractive index can be negative. Treating these topics at an introductory to intermediate level, Fast Light, Slow Light and Left-Handed Light focuses on the basic theory and describes the significant experimental progress made during the past decade. The book pays considerable attention to the fact that superluminal group velocities are not in conflict with special relativity and to the role of quantum effects in preventing superluminal communication and violations of Einstein causality. It also explores some of the basic physics at the opposite extreme of very slow group velocities as well as stopped and regenerated light, including the concepts of electromagnetically induced transparency and dark-state polaritons. Another very active aspect of the subject discussed concerns the possibility of designing metamaterials in which the refractive index can be negative and propagating light is left-handed in the sense that the phase and group velocities are in opposite directions. The last two chapters are an introduction to some of the basic theory and consequences of negative refractive index, with emphasis on the seminal work carried out since 2000. The possibility that "perfect" lenses can be made from negative-index metamaterials-which has been perhaps the most controversial aspect of the field-is introduced and discussed in some detail.