Light Scattering and Photon Correlation Spectroscopy


Book Description

Since their inception more than 2.5 years ago, photon correlation techniques for the spatial, temporal or spectral analysis of fluctuating light fields have found an ever-widening range of applications. Using detectors which re spond to single quanta of the radiation field, these methods are intrinsically digital in natnre and in many experimental situations offer a unique degree of accuracy and sensitivity, not only for the study of primary light sources themselves, but most particularly in the use of a laser-beam probe to study light scattering from pure fluids, macromolecular suspensions and laminar or turbulent flowing fluids and gases. Following the earliest developments in laser scattering by dilute macro nl01ecular suspensions, in , ... hich particle sizing was the main aim, and the use of photon correlation techniques for laser-Doppler studies of flow and tnrbuence. both of which areas were the subject of NATO ASls in Capri, Italy in 19;:3 and 19;6. significant advances have be('n made in recent years in many other areas. These were reflected in the topics covered in this NATO Advanced Research Workshop, which took place from August 2;th to 30th, 1!)!}6, at the Jagiellonian University, Krakow, Poland. These in cluded ('xperimental techniques. statist.ics and data reduction, colloids and aggregation, polymers, gels, liquid crystals and mixtures, protein solutions, critical pllf'nomena and dense media.




Dynamic Light Scattering


Book Description

In the twenty years since their inception, modern dynamic light-scattering techniques have become increasingly sophisticated, and their applications have grown exceedingly diverse. Applications of the techniques to problems in physics, chemistry, biology, medicine, and fluid mechanics have prolifer ated. It is probably no longer possible for one or two authors to write a monograph to cover in depth the advances in scattering techniques and the main areas in which they have made a major impact. This volume, which we expect to be the first of aseries, presents reviews of selected specialized areas by renowned experts. It makes no attempt to be comprehensive; it emphasizes a body of related applications to polymeric, biological, and colloidal systems, and to critical phenomena. The well-known monographs on dynamic light scattering by Berne and Pecora and by Chu were published almost ten years ago. They provided comprehensive treatments of the general principles of dynamic light scat tering and gave introductions to a wide variety of applications, but natu rally they could not treat the new applications and advances in older ones that have arisen in the last decade. The new applications include studies of interacting particles in solution (Chapter 4); scaling approaches to the dynamics of polymers, including polymers in semidilute solution (Chapter 5); the use of both Fabry-Perot interferometry and photon correlation spectroscopy to study bulk polymers (Chapter 6); studies of micelIes and microemulsions (Chapter 8); studies of polymer gels (Chapter 9).




Photon Correlation Spectroscopy and Velocimetry


Book Description

Following the first Capri School on Photon Correlation Spectroscopy held in July 1973 and published earlier in this series (Series B: Physics v.3) a second Capri NATO Advanced Study Institute on this topic was held at the Hotei Luna from 26 July to 6 August 1976. This volume contains the invited lecture courses and seminars and some of the contributed seminars presented at this Institute. Much had happened in the field in the intervening three years and it was the intention of the Organising Committee to build on the previous courses • without detailed repetition of fundamentals. and to extend the coverage widely over the use of photon-correla tion methods for the temporal or spectral analysis of fluctuating light sources. In particular, the rapid expansion of these methods for the measurement of macroscopic motion by Laser Doppler Veloci metry was given special emphasis as is indicated in the title. The members of the Organizing Committee were: E R Pike, RSRE, Malvern, UK } _ Co-directors H Z Cummins, CCNY, New York, USA M Bertolotti, University of Rome, Italy - Local Organiser P Pusey, RSRE, Malvern, UK - Treasurer V DeGiorgio, CISE, Milan, Italy P Lallemand, ENS, Paris, France Pierre de Gennes assisted the Committee during the planning of the Institute but was unfortunately prevented at the last minute from attending.




Laser Light Scattering


Book Description

Laser Light Scattering: Basic Principles and Practice, Second Edition deals with the technical aspects of laser light scattering, including the basic principles and practice. Topics covered include light scattering theory, optical mixing spectrometry, photon correlation spectroscopy, and interferometry. Experimental methods and methods of data analysis are also described. This book is comprised of eight chapters and begins with a discussion on the interrelationship between laser light scattering and other types of scattering techniques that use X-rays and neutrons, with particular reference to momentum and energy transfers as well as time-averaged and time-dependent scattered intensity. The spectrum of scattered light and a single-particle approach to time-averaged scattered intensity are considered. The following chapters focus on photoelectric detection of the scattered electric field; optical mixing spectrometers; basic equations for photon correlation spectroscopy; and the principles of Fabry-Perot interferometry. The pertinent features of the experimental aspects of laser light scattering are also outlined, together with the Laplace inversion problem. The final chapter examines polymer molecular-weight distributions in relation to particle sizing. This monograph will be of interest to physicists.




Dynamic Light Scattering


Book Description

"Dynamic light scattering is an experimental technique now commonly found in laboratories concerned with fundamental studies of macromolecular systems"--Preface.




Particle Characterization: Light Scattering Methods


Book Description

Particle characterization is an important component in product research and development, manufacture, and quality control of particulate materials and an important tool in the frontier of sciences, such as in biotechnology and nanotechnology. This book systematically describes one major branch of modern particle characterization technology - the light scattering methods. This is the first monograph in particle science and technology covering the principles, instrumentation, data interpretation, applications, and latest experimental development in laser diffraction, optical particle counting, photon correlation spectroscopy, and electrophoretic light scattering. In addition, a summary of all major particle sizing and other characterization methods, basic statistics and sample preparation techniques used in particle characterization, as well as almost 500 latest references are provided. The book is a must for industrial users of light scattering techniques characterizing a variety of particulate systems and for undergraduate or graduate students who want to learn how to use light scattering to study particular materials, in chemical engineering, material sciences, physical chemistry and other related fields.




Advanced Characterization Of Nanostructured Materials: Probing The Structure And Dynamics With Synchrotron X-rays And Neutrons


Book Description

Advanced Characterization of Nanostructured Materials — Probing the Structure and Dynamics with Synchrotron X-Rays and Neutrons is a collection of chapters which review the characterization of the structure and internal dynamics of a wide variety of nanostructured materials using various synchrotron X-ray and neutron scattering techniques. It is intended for graduate students and researchers who might be interested in learning about and applying these methods. The authors are well-known practitioners in their fields of research who provide detailed and authoritative accounts of how these techniques have been applied to study systems ranging from thin films and monolayers on solid surfaces and at liquid-air, liquid-liquid and solid-liquid interfaces; nanostructured composite materials; battery materials, and catalytic materials. While there have been a great many books published on nanoscience, there are relatively few that have discussed in one volume detailed synchrotron X-ray and neutron methods for advanced characterization of nanomaterials in thin films, composite materials, catalytic and battery materials and at interfaces. This book should provide an incentive and a reference for researchers in nanomaterials for using these techniques as a powerful way to characterize their samples. It should also help to popularize the use of synchrotron and neutron facilities by the nanoscience community.




Dynamic Light Scattering


Book Description

In the twenty years since their inception, modern dynamic light-scattering techniques have become increasingly sophisticated, and their applications have grown exceedingly diverse. Applications of the techniques to problems in physics, chemistry, biology, medicine, and fluid mechanics have prolifer ated. It is probably no longer possible for one or two authors to write a monograph to cover in depth the advances in scattering techniques and the main areas in which they have made a major impact. This volume, which we expect to be the first of aseries, presents reviews of selected specialized areas by renowned experts. It makes no attempt to be comprehensive; it emphasizes a body of related applications to polymeric, biological, and colloidal systems, and to critical phenomena. The well-known monographs on dynamic light scattering by Berne and Pecora and by Chu were published almost ten years ago. They provided comprehensive treatments of the general principles of dynamic light scat tering and gave introductions to a wide variety of applications, but natu rally they could not treat the new applications and advances in older ones that have arisen in the last decade. The new applications include studies of interacting particles in solution (Chapter 4); scaling approaches to the dynamics of polymers, including polymers in semidilute solution (Chapter 5); the use of both Fabry-Perot interferometry and photon correlation spectroscopy to study bulk polymers (Chapter 6); studies of micelIes and microemulsions (Chapter 8); studies of polymer gels (Chapter 9).




Light Scattering Reviews 4


Book Description

This fourth volume of Light Scattering Reviews is composed of three parts. The ?rstpartisconcernedwiththeoreticalandexperimentalstudiesofsinglelightsc- tering by small nonspherical particles. Light scattering by small particles such as, for instance, droplets in the terrestrial clouds is a well understood area of physical optics. On the other hand, exact theoretical calculations of light scattering p- terns for most of nonspherical and irregularly shaped particles can be performed only for the restricted values of the size parameter, which is proportional to the ratio of the characteristic size of the particle to the wavelength?. For the large nonspherical particles, approximations are used (e. g. , ray optics). The exact th- retical techniques such as the T-matrix method cannot be used for extremely large particles, such as those in ice clouds, because then the size parameter in the v- iblex=2?a/???,wherea is the characteristic size (radius for spheres), and the associated numerical codes become unstable and produce wrong answers. Yet another problem is due to the fact that particles in many turbid media (e. g. , dust clouds) cannot be characterized by a single shape. Often, refractive indices also vary. Because of problems with theoretical calculations, experimental (i. e. , la- ratory) investigations are important for the characterization and understanding of the optical properties of such types of particles. The ?rst paper in this volume, written by B. Gustafson, is aimed at the descr- tionofscaledanalogueexperimentsinelectromagneticscattering.




Fluids, Colloids and Soft Materials


Book Description

This book presents a compilation of self-contained chapters covering a wide range of topics within the broad field of soft condensed matter. Each chapter starts with basic definitions to bring the reader up-to-date on the topic at hand, describing how to use fluid flows to generate soft materials of high value either for applications or for basic research. Coverage includes topics related to colloidal suspensions and soft materials and how they differ in behavior, along with a roadmap for researchers on how to use soft materials to study relevant physics questions related to geometrical frustration.