Light Scattering Reviews 7


Book Description

Light Scattering Reviews (vol.7) is aimed at the description of modern advances in radiative transfer and light scattering. The following topics will be considered: the general - purpose discrete - ordinate algorithm DISORT for radiative transfer, fast radiative transfer techniques, use of polarization in remote sensing, Markovian approach for radiative transfer in cloudy atmospheres, coherent and incoherent backscattering by turbid media and surfaces,advances in radiative transfer methods as used for luminiscence tomography, optical properties of aerosol, ice crystals, snow, and oceanic water. This volume will be a valuable addition to already published volumes 1-6 of Light Scattering Reviews.




Light Scattering Reviews 8


Book Description

Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.




Dynamic Light Scattering


Book Description

Lasers play an increasingly important role in a variety of detection techniques, making inelastic light scattering a tool of growing value in the investigation of dynamic and structural problems in chemistry, biology, and physics. Until the initial publication of this work, however, no monograph treated the principles behind current developments in the field.This volume presents a comprehensive introduction to the principles underlying laser light scattering, focusing on the time dependence of fluctuations in fluid systems; it also serves as an introduction to the theory of time correlation functions, with chapters on projection operator techniques in statistical mechanics. The first half comprises most of the material necessary for an elementary understanding of the applications to the study of macromolecules, or comparable sized particles in fluids, and to the motility of microorganisms. The study of collective (or many particle) effects constitutes the second half, including more sophisticated treatments of macromolecules in solution and most of the applications of light scattering to the study of fluids containing small molecules.With its wide-ranging discussions of the many applications of light scattering, this text will be of interest to research chemists, physicists, biologists, medical and fluid mechanics researchers, engineers, and graduate students in these areas.




Laser Light Scattering


Book Description

Light scattering has provided an important method for characterizing macro-molecules for at least three decades. Now, through the use of intense, coherent laser light and efficient spectrum analyzers and autocorrelators, experiments in the frequency and time domains can be used to study molecular motion, e.g. diffusion and flow and other dynamic processes, as well as the equilibrium properties of solutions. As a result, laser light scattering has become a powerful form of spectroscopy with applications in physics, biochemistry, and other fields. This volume, which employs a relatively simple approach in order to reach the widest audience, focuses on two main topics: classical light scattering (scattering intensity, concentration dependence, size dependence, and polydispersity) and dynamic light scattering (time and frequency dependence, translational diffusion, directed flow, rotational motion, and more). A series of useful appendixes and a list of references complete this concise, accessible work, a valuable resource for physicists, chemists, and anyone interested in the increasingly important field of laser light scattering.




A Scatter of Light


Book Description

“Full of yearning, ponderances about art and what it means to be an artist, and self-revelation, A Scatter of Light has a simmering intensity that makes it hard to put down."—NPR An Instant New York Times Bestseller Last Night at the Telegraph Club author Malinda Lo returns to the Bay Area with another masterful queer coming-of-age story, this time set against the backdrop of the first major Supreme Court decisions legalizing gay marriage. Aria Tang West was looking forward to a summer on Martha’s Vineyard with her best friends—one last round of sand and sun before college. But after a graduation party goes wrong, Aria’s parents exile her to California to stay with her grandmother, artist Joan West. Aria expects boredom, but what she finds is Steph Nichols, her grandmother’s gardener. Soon, Aria is second-guessing who she is and what she wants to be, and a summer that once seemed lost becomes unforgettable—for Aria, her family, and the working-class queer community Steph introduces her to. It’s the kind of summer that changes a life forever. And almost sixty years after the end of Last Night at the Telegraph Club, A Scatter of Light also offers a glimpse into Lily and Kath’s lives since 1955.




Light Scattering by Particles in Water


Book Description

Light scattering-based methods are used to characterize small particles suspended in water in a wide range of disciplines ranging from oceanography, through medicine, to industry. The scope and accuracy of these methods steadily increases with the progress in light scattering research. This book focuses on the theoretical and experimental foundations of the study and modeling of light scattering by particles in water and critically evaluates the key constraints of light scattering models. It begins with a brief review of the relevant theoretical fundamentals of the interaction of light with condensed matter, followed by an extended discussion of the basic optical properties of pure water and seawater and the physical principles that explain them. The book continues with a discussion of key optical features of the pure water/seawater and the most common components of natural waters. In order to clarify and put in focus some of the basic physical principles and most important features of the experimental data on light scattering by particles in water, the authors employ simple models. The book concludes with extensive critical reviews of the experimental constraints of light scattering models: results of measurements of light scattering and of the key properties of the particles: size distribution, refractive index (composition), structure, and shape. These reviews guide the reader through literature scattered among more than 210 scientific journals and periodicals which represent a wide range of disciplines. A special emphasis is put on the methods of measuring both light scattering and the relevant properties of the particles, because principles of these methods may affect interpretation and applicability of the results. The book includes extensive guides to literature on light scattering data and instrumentation design, as well as on the data for size distributions, refractive indices, and shapes typical of particles in natural waters. It also features a comprehensive index, numerous cross-references, and a reference list with over 1370 entries. An errata sheet for this work can be found at: http://www.tpdsci.com/Ref/Jonasz_M_2007_LightScatE.php *Extensive reference section provides handy compilations of knowledge on the designs of light scattering meters, sources of experimental data, and more *Worked exercises and examples throughout




Light Scattering Reviews 9


Book Description

Light Scattering Reviews (vol. 9) is aimed at the description of modern advances in radiative transfer and light scattering. The following topics will be considered: light scattering by atmospheric dust particles and also by inhomogeneous scatterers, the general - purpose discrete - ordinate algorithm DISORT for radiative transfer, the radiative transfer code RAY based on the adding-doubling solution of the radiative transfer equation, aerosol and cloud remote sensing, use of polarization in remote sensing, direct aerosol radiative forcing, principles of the Mueller matrix measurements, light reflectance from various land surfaces. This volume will be a valuable addition to already published volumes 1-8 of Light Scattering Reviews.




Springer Series in Light Scattering


Book Description

This book presents recent advances in studies of light propagation, scattering, emission and absorption in random media. Many natural and biological media vary randomly in time and space. Examples are terrestrial atmosphere and ocean, biological liquids and tissues to name but a few.




Plasma Scattering of Electromagnetic Radiation


Book Description

This work presents one of the most powerful methods of plasma diagnosis in exquisite detail, to guide researchers in the theory and measurement techniques of light scattering in plasmas. Light scattering in plasmas is essential in the research and development of fusion energy, environmental solutions, and electronics.Referred to as the "Bible" by researchers, the work encompasses fusion and industrial applications essential in plasma research. It is the only comprehensive resource specific to the plasma scattering technique. It provides a wide-range of experimental examples and discussion of their principles with worked examples to assist researchers in applying the theory. - Computing techniques for solving basic equations helps researchers compare data to the actual experiment - New material on advances on the experimental side, such as the application of high density plasmas of inertial fusion - Worked out examples of the scattering technique for easier comprehension of theory




All-Dielectric Nanophotonics


Book Description

All-Dielectric Nanophotonics aims to review the underlying principles, advances and future directions of research in the field. The book reviews progress in all-dielectric metasurfaces and nanoantennas, new types of excitations, such as magnetic and toroidal modes and associated anapole states. Ultrahigh-Q resonant modes such as bound states in the continuum are covered and the promise of replacing conventional bulky optical elements with nanometer-scale structures with enhanced functionality is discussed. This book is suitable for new entrants to the field as an overview of this research area. Experienced researchers and professionals in the field may also find this book suitable as a reference. - Provides an overview of the fundamental principles, theories and calculation techniques underpinning all-dielectric nanophotonics research - Reviews current progress in the field, such as all-dielectric metasurfaces and nanoantennas, new types of excitations, associated anapole states, and more - Discusses emerging applications such as active nanophotonics with in-depth analysis