Lightweight Alloys for Aerospace Applications


Book Description

This proceedings volume from the 2001 TMS Annual Meeting & Exhibition covers advances made in the area of scientific understanding of technological application of lightweight alloys. Papers focus on fundamental science as well as application and concentrate on scientific advances in aluminum, magnesium, titanium, and beryllium alloys and their composites. Processing, structure-property relationship, failure mechanisms, and advanced joining themes are also discussed.




Lightweight Alloys for Aerospace Applications


Book Description

This proceedings volume from the 2001 TMS Annual Meeting & Exhibition covers advances made in the area of scientific understanding of technological application of lightweight alloys. Papers focus on fundamental science as well as application and concentrate on scientific advances in aluminum, magnesium, titanium, and beryllium alloys and their composites. Processing, structure-property relationship, failure mechanisms, and advanced joining themes are also discussed.







Aerospace Alloys


Book Description

This book presents an up-to-date overview on the main classes of metallic materials currently used in aeronautical structures and propulsion engines and discusses other materials of potential interest for structural aerospace applications. The coverage encompasses light alloys such as aluminum-, magnesium-, and titanium-based alloys, including titanium aluminides; steels; superalloys; oxide dispersion strengthened alloys; refractory alloys; and related systems such as laminate composites. In each chapter, materials properties and relevant technological aspects, including processing, are presented. Individual chapters focus on coatings for gas turbine engines and hot corrosion of alloys and coatings. Readers will also find consideration of applications in aerospace-related fields. The book takes full account of the impact of energy saving and environmental issues on materials development, reflecting the major shifts that have occurred in the motivations guiding research efforts into the development of new materials systems. Aerospace Alloys will be a valuable reference for graduate students on materials science and engineering courses and will also provide useful information for engineers working in the aerospace, metallurgical, and energy production industries.







Lightweight Materials


Book Description




Surface Engineering of Light Alloys


Book Description

The growing use of light alloys in industries such as aerospace, sports equipment and biomedical devices is driving research into surface engineering technologies to enhance their properties for the desired end use. Surface engineering of light alloys: Aluminium, magnesium and titanium alloys provides a comprehensive review of the latest technologies for modifying the surfaces of light alloys to improve their corrosion, wear and tribological properties. Part one discusses surface degradation of light alloys with chapters on corrosion behaviour of magnesium alloys and protection techniques, wear properties of aluminium-based alloys and tribological behaviour of titanium alloys. Part two reviews surface engineering technologies for light alloys including anodising, plasma electrolytic oxidation, thermal spraying, cold spraying, physical vapour deposition, plasma assisted surface treatment, PIII/PSII treatments, laser surface modification, ceramic conversion and duplex treatments. Part three covers applications for surface engineered light alloys including sports equipment, biomedical devices and plasma electrolytic oxidation and anodised aluminium alloys for spacecraft applications. With its distinguished editor and international team of contributors, Surface engineering of light alloys: Aluminium, magnesium and titanium alloys is a standard reference for engineers, metallurgists and materials scientists looking for a comprehensive source of information on surface engineering of aluminium, magnesium and titanium alloys. Discusses surface degradation of light alloys considering corrosion behaviour and wear and tribological properties Examines surface engineering technologies and modification featuring plasma electrolytic oxidation treatments and both thermal and cold spraying Reviews applications for engineered light alloys in sports equipment, biomedical devices and spacecraft




Al-Si Alloys


Book Description

This book details aluminum alloys with special focus on the aluminum silicon (Al‐Si) systems – that are the most abundant alloys second only to steel. The authors include a description of the manufacturing principles, thermodynamics, and other main characteristics of Al‐Si alloys. Principles of processing, testing, and in particular applications in the Automotive, Aeronautical and Aerospace fields are addressed.




Light Metal Alloys Applications


Book Description

Lightweight alloys have become of great importance in engineering for construction of transportation equipment. At present, the metals that serve as the base of the principal light alloys are aluminum and magnesium. One of the most important lightweight alloys are the aluminum alloys in use for several applications (structural components wrought aluminum alloys, parts and plates). However, some casting parts that have low cost of production play important role in aircraft parts. Magnesium and its alloys are among the lightest of all metals and the sixth most abundant metal on earth. Magnesium is ductile and the most machinable of all metals. Many of these light weight alloys have appropriately high strength to warrant their use for structural purposes, and as a result of their use, the total weight of transportation equipment has been considerably decreased.




Unconventional Techniques for the Production of Light Alloys and Composites


Book Description

This book addresses methods used in the synthesis of light alloys and composites for industrial applications. It begins with a broad introduction to virtually all aspects of the technology of light alloys and composite materials for aircraft and aerospace applications. The basic theory of fiber and particle reinforcements; light metallic material characteristics and composite systems; components forms, and manufacturing techniques and processes are discussed. The book then progresses to describe the production of alloys and composites by unconventional techniques, such as powder metallurgy, sandwich technique, severe plastic deformation, additive manufacturing, and thermal spray, making it appropriate for researchers in both academia and industry. It will be of special interest to aerospace engineers. Provides a broad introduction to the technology used in manufacturing light alloys and composite materials; Describes the current technologies employed in synthesizing light alloys made from advanced materials; Focuses on unconventional techniques used to produce light alloys and composites in aerospace applications.