Limit Cycles of Differential Equations


Book Description

This textbook contains the lecture series originally delivered at the "Advanced Course on Limit Cycles of Differential Equations" in the Centre de Rechercha Mathematica Barcelona in 2006. It covers the center-focus problem for polynomial vector fields and the application of abelian integrals to limit cycle bifurcations. Both topics are related to the authors' interests in Hilbert's sixteenth problem, but would also be of interest to those working more generally in the qualitative theory of dynamical systems.




Notes on Diffy Qs


Book Description

Version 6.0. An introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, the Laplace transform, and power series methods. It has a detailed appendix on linear algebra. The book was developed and used to teach Math 286/285 at the University of Illinois at Urbana-Champaign, and in the decade since, it has been used in many classrooms, ranging from small community colleges to large public research universities. See https: //www.jirka.org/diffyqs/ for more information, updates, errata, and a list of classroom adoptions.




Differential Equations with Symbolic Computation


Book Description

This book presents the state-of-the-art in tackling differential equations using advanced methods and software tools of symbolic computation. It focuses on the symbolic-computational aspects of three kinds of fundamental problems in differential equations: transforming the equations, solving the equations, and studying the structure and properties of their solutions.




Differential Equations and Dynamical Systems


Book Description

Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence bf interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mat!!ematics (TAM). The development of new courses is a natural consequence of a high level of excitement oil the research frontier as newer techniques, such as numerical and symbolic cotnputer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Math ematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface to the Second Edition This book covers those topics necessary for a clear understanding of the qualitative theory of ordinary differential equations and the concept of a dynamical system. It is written for advanced undergraduates and for beginning graduate students. It begins with a study of linear systems of ordinary differential equations, a topic already familiar to the student who has completed a first course in differential equations.




Theory of Limit Cycles


Book Description

Deals with limit cycles of general plane stationary systems, including their existence, nonexistence, stability, and uniqueness. This book also discusses the global topological structure of limit cycles and phase-portraits of quadratic systems.




Piecewise-smooth Dynamical Systems


Book Description

This book presents a coherent framework for understanding the dynamics of piecewise-smooth and hybrid systems. An informal introduction expounds the ubiquity of such models via numerous. The results are presented in an informal style, and illustrated with many examples. The book is aimed at a wide audience of applied mathematicians, engineers and scientists at the beginning postgraduate level. Almost no mathematical background is assumed other than basic calculus and algebra.




Finiteness Theorems for Limit Cycles


Book Description

This book is devoted to the following finiteness theorem: A polynomial vector field on the real plane has a finite number of limit cycles. To prove the theorem, it suffices to note that limit cycles cannot accumulate on a polycycle of an analytic vector field. This approach necessitates investigation of the monodromy transformation (also known as the Poincare return mapping or the first return mapping) corresponding to this cycle. To carry out this investigation, this book utilizes five sources: The theory of Dulac, use of the complex domain, resolution of singularities, the geometric theory of normal forms, and superexact asymptotic series. In the introduction, the author presents results about this problem that were known up to the writing of the present book, with full proofs (except in the case of the results in the local theory and theorems on resolution of singularities).




Qualitative Theory of Planar Differential Systems


Book Description

This book deals with systems of polynomial autonomous ordinary differential equations in two real variables. The emphasis is mainly qualitative, although attention is also given to more algebraic aspects as a thorough study of the center/focus problem and recent results on integrability. In the last two chapters the performant software tool P4 is introduced. From the start, differential systems are represented by vector fields enabling, in full strength, a dynamical systems approach. All essential notions, including invariant manifolds, normal forms, desingularization of singularities, index theory and limit cycles, are introduced and the main results are proved for smooth systems with the necessary specifications for analytic and polynomial systems.







Elementary Differential Equations and Boundary Value Problems


Book Description

Elementary Differential Equations and Boundary Value Problems 11e, like its predecessors, is written from the viewpoint of the applied mathematician, whose interest in differential equations may sometimes be quite theoretical, sometimes intensely practical, and often somewhere in between. The authors have sought to combine a sound and accurate (but not abstract) exposition of the elementary theory of differential equations with considerable material on methods of solution, analysis, and approximation that have proved useful in a wide variety of applications. While the general structure of the book remains unchanged, some notable changes have been made to improve the clarity and readability of basic material about differential equations and their applications. In addition to expanded explanations, the 11th edition includes new problems, updated figures and examples to help motivate students. The program is primarily intended for undergraduate students of mathematics, science, or engineering, who typically take a course on differential equations during their first or second year of study. The main prerequisite for engaging with the program is a working knowledge of calculus, gained from a normal two or three semester course sequence or its equivalent. Some familiarity with matrices will also be helpful in the chapters on systems of differential equations.