Limit Theorems for Randomly Stopped Stochastic Processes


Book Description

This volume is the first to present a state-of-the-art overview of this field, with many results published for the first time. It covers the general conditions as well as the basic applications of the theory, and it covers and demystifies the vast and technically demanding Russian literature in detail. Its coverage is thorough, streamlined and arranged according to difficulty.




Stopped Random Walks


Book Description

My first encounter with renewal theory and its extensions was in 1967/68 when I took a course in probability theory and stochastic processes, where the then recent book Stochastic Processes by Professor N.D. Prabhu was one of the requirements. Later, my teacher, Professor Carl-Gustav Esseen, gave me some problems in this area for a possible thesis, the result of which was Gut (1974a). Over the years I have, on and off, continued research in this field. During this time it has become clear that many limit theorems can be obtained with the aid of limit theorems for random walks indexed by families of positive, integer valued random variables, typically by families of stopping times. During the spring semester of 1984 Professor Prabhu visited Uppsala and very soon got me started on a book focusing on this aspect. I wish to thank him for getting me into this project, for his advice and suggestions, as well as his kindness and hospitality during my stay at Cornell in the spring of 1985. Throughout the writing of this book I have had immense help and support from Svante Janson. He has not only read, but scrutinized, every word and every formula of this and earlier versions of the manuscript. My gratitude to him for all the errors he found, for his perspicacious suggestions and remarks and, above all, for what his unusual personal as well as scientific generosity has meant to me cannot be expressed in words.




Limit Theorems for Stochastic Processes


Book Description

Initially the theory of convergence in law of stochastic processes was developed quite independently from the theory of martingales, semimartingales and stochastic integrals. Apart from a few exceptions essentially concerning diffusion processes, it is only recently that the relation between the two theories has been thoroughly studied. The authors of this Grundlehren volume, two of the international leaders in the field, propose a systematic exposition of convergence in law for stochastic processes, from the point of view of semimartingale theory, with emphasis on results that are useful for mathematical theory and mathematical statistics. This leads them to develop in detail some particularly useful parts of the general theory of stochastic processes, such as martingale problems, and absolute continuity or contiguity results. The book contains an elementary introduction to the main topics: theory of martingales and stochastic integrales, Skorokhod topology, etc., as well as a large number of results which have never appeared in book form, and some entirely new results. It should be useful to the professional probabilist or mathematical statistician, and of interest also to graduate students.







Stochastic Processes and Applications


Book Description

This book highlights the latest advances in stochastic processes, probability theory, mathematical statistics, engineering mathematics and algebraic structures, focusing on mathematical models, structures, concepts, problems and computational methods and algorithms important in modern technology, engineering and natural sciences applications. It comprises selected, high-quality, refereed contributions from various large research communities in modern stochastic processes, algebraic structures and their interplay and applications. The chapters cover both theory and applications, illustrated by numerous figures, schemes, algorithms, tables and research results to help readers understand the material and develop new mathematical methods, concepts and computing applications in the future. Presenting new methods and results, reviews of cutting-edge research, and open problems and directions for future research, the book serves as a source of inspiration for a broad spectrum of researchers and research students in probability theory and mathematical statistics, applied algebraic structures, applied mathematics and other areas of mathematics and applications of mathematics. The book is based on selected contributions presented at the International Conference on “Stochastic Processes and Algebraic Structures – From Theory Towards Applications” (SPAS2017) to mark Professor Dmitrii Silvestrov’s 70th birthday and his 50 years of fruitful service to mathematics, education and international cooperation, which was held at Mälardalen University in Västerås and Stockholm University, Sweden, in October 2017.




Random Summation


Book Description

This book provides an introduction to the asymptotic theory of random summation, combining a strict exposition of the foundations of this theory and recent results. It also includes a description of its applications to solving practical problems in hardware and software reliability, insurance, finance, and more. The authors show how practice interacts with theory, and how new mathematical formulations of problems appear and develop. Attention is mainly focused on transfer theorems, description of the classes of limit laws, and criteria for convergence of distributions of sums for a random number of random variables. Theoretical background is given for the choice of approximations for the distribution of stock prices or surplus processes. General mathematical theory of reliability growth of modified systems, including software, is presented. Special sections deal with doubling with repair, rarefaction of renewal processes, limit theorems for supercritical Galton-Watson processes, information properties of probability distributions, and asymptotic behavior of doubly stochastic Poisson processes. Random Summation: Limit Theorems and Applications will be of use to specialists and students in probability theory, mathematical statistics, and stochastic processes, as well as to financial mathematicians, actuaries, and to engineers desiring to improve probability models for solving practical problems and for finding new approaches to the construction of mathematical models.




Datensicherheit


Book Description




Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables


Book Description

This book presents a clear, systematic treatment of convergence theorems of set-valued random variables (random sets) and fuzzy set-valued random variables (random fuzzy sets). Topics such as strong laws of large numbers and central limit theorems, including new results in connection with the theory of empirical processes are covered. The author's own recent developments on martingale convergence theorems and their applications to data processing are also included. The mathematical foundations along with a clear explanation such as Hölmander's embedding theorem, notions of various convergence of sets and fuzzy sets, Aumann integrals, conditional expectations, selection theorems, measurability and integrability arguments for both set-valued and fuzzy set-valued random variables and newly obtained optimizations techniques based on invariant properties are also given.




Perturbed Semi-Markov Type Processes I


Book Description

This book is the first volume of a two-volume monograph devoted to the study of limit and ergodic theorems for regularly and singularly perturbed Markov chains, semi-Markov processes, and multi-alternating regenerative processes with semi-Markov modulation. The first volume presents necessary and sufficient conditions for weak convergence for first-rare-event times and convergence in the topology J for first-rare-event processes defined on regularly perturbed finite Markov chains and semi-Markov processes. The text introduces new asymptotic recurrent algorithms of phase space reduction. It also addresses both effective conditions of weak convergence for distributions of hitting times as well as convergence of expectations of hitting times for regularly and singularly perturbed finite Markov chains and semi-Markov processes. The book also contains a comprehensive bibliography of major works in the field. It provides an effective reference for both graduate students as well as theoretical and applied researchers studying stochastic processes and their applications.




NBS Special Publication


Book Description