Limit Theorems in Change-Point Analysis


Book Description

Change-point problems arise in a variety of experimental and mathematical sciences, as well as in engineering and health sciences. This rigorously researched text provides a comprehensive review of recent probabilistic methods for detecting various types of possible changes in the distribution of chronologically ordered observations. Further developing the already well-established theory of weighted approximations and weak convergence, the authors provide a thorough survey of parametric and non-parametric methods, regression and time series models together with sequential methods. All but the most basic models are carefully developed with detailed proofs, and illustrated by using a number of data sets. Contains a thorough survey of: The Likelihood Approach Non-Parametric Methods Linear Models Dependent Observations This book is undoubtedly of interest to all probabilists and statisticians, experimental and health scientists, engineers, and essential for those working on quality control and surveillance problems. Foreword by David Kendall




Probability, Statistics and Modelling in Public Health


Book Description

Probability, Statistics and Modelling in Public Health consists of refereed contributions by expert biostatisticians that discuss various probabilistic and statistical models used in public health. Many of them are based on the work of Marvin Zelen of the Harvard School of Public Health. Topics discussed include models based on Markov and semi-Markov processes, multi-state models, models and methods in lifetime data analysis, accelerated failure models, design and analysis of clinical trials, Bayesian methods, pharmaceutical and environmental statistics, degradation models, epidemiological methods, screening programs, early detection of diseases, and measurement and analysis of quality of life.







Change-Point Analysis in Nonstationary Stochastic Models


Book Description

This book covers the development of methods for detection and estimation of changes in complex systems. These systems are generally described by nonstationary stochastic models, which comprise both static and dynamic regimes, linear and nonlinear dynamics, and constant and time-variant structures of such systems. It covers both retrospective and sequential problems, particularly theoretical methods of optimal detection. Such methods are constructed and their characteristics are analyzed both theoretically and experimentally. Suitable for researchers working in change-point analysis and stochastic modelling, the book includes theoretical details combined with computer simulations and practical applications. Its rigorous approach will be appreciated by those looking to delve into the details of the methods, as well as those looking to apply them.




Asymptotic Methods in Probability and Statistics


Book Description

One of the aims of the conference on which this book is based, was to provide a platform for the exchange of recent findings and new ideas inspired by the so-called Hungarian construction and other approximate methodologies. This volume of 55 papers is dedicated to Miklós Csörgő a co-founder of the Hungarian construction school by the invited speakers and contributors to ICAMPS'97.This excellent treatize reflects the many developments in this field, while pointing to new directions to be explored. An unequalled contribution to research in probability and statistics.




Estimations And Tests In Change-point Models


Book Description

'This is a solid mathematical treatment of some topics in the analysis of change-point models. The book is intended for graduate students and scientific researchers using statistics in practice.'zbMATHThis book provides a detailed exposition of the specific properties of methods of estimation and test in a wide range of models with changes. They include parametric and nonparametric models for samples, series, point processes and diffusion processes, with changes at the threshold of variables or at a time or an index of sampling.The book contains many new results and fills a gap in statistics literature, where the asymptotic properties of the estimators and test statistics in singular models are not sufficiently developed. It is suitable for graduate students and scientific researchers working in the industry, governmental laboratories and academia.




Statistics and Simulation


Book Description

This volume features original contributions and invited review articles on mathematical statistics, statistical simulation and experimental design. The selected peer-reviewed contributions originate from the 8th International Workshop on Simulation held in Vienna in 2015. The book is intended for mathematical statisticians, Ph.D. students and statisticians working in medicine, engineering, pharmacy, psychology, agriculture and other related fields. The International Workshops on Simulation are devoted to statistical techniques in stochastic simulation, data collection, design of scientific experiments and studies representing broad areas of interest. The first 6 workshops took place in St. Petersburg, Russia, in 1994 – 2009 and the 7th workshop was held in Rimini, Italy, in 2013.




Applied Survival Analysis


Book Description

THE MOST PRACTICAL, UP-TO-DATE GUIDE TO MODELLING AND ANALYZING TIME-TO-EVENT DATA—NOW IN A VALUABLE NEW EDITION Since publication of the first edition nearly a decade ago, analyses using time-to-event methods have increase considerably in all areas of scientific inquiry mainly as a result of model-building methods available in modern statistical software packages. However, there has been minimal coverage in the available literature to9 guide researchers, practitioners, and students who wish to apply these methods to health-related areas of study. Applied Survival Analysis, Second Edition provides a comprehensive and up-to-date introduction to regression modeling for time-to-event data in medical, epidemiological, biostatistical, and other health-related research. This book places a unique emphasis on the practical and contemporary applications of regression modeling rather than the mathematical theory. It offers a clear and accessible presentation of modern modeling techniques supplemented with real-world examples and case studies. Key topics covered include: variable selection, identification of the scale of continuous covariates, the role of interactions in the model, assessment of fit and model assumptions, regression diagnostics, recurrent event models, frailty models, additive models, competing risk models, and missing data. Features of the Second Edition include: Expanded coverage of interactions and the covariate-adjusted survival functions The use of the Worchester Heart Attack Study as the main modeling data set for illustrating discussed concepts and techniques New discussion of variable selection with multivariable fractional polynomials Further exploration of time-varying covariates, complex with examples Additional treatment of the exponential, Weibull, and log-logistic parametric regression models Increased emphasis on interpreting and using results as well as utilizing multiple imputation methods to analyze data with missing values New examples and exercises at the end of each chapter Analyses throughout the text are performed using Stata® Version 9, and an accompanying FTP site contains the data sets used in the book. Applied Survival Analysis, Second Edition is an ideal book for graduate-level courses in biostatistics, statistics, and epidemiologic methods. It also serves as a valuable reference for practitioners and researchers in any health-related field or for professionals in insurance and government.




Linear Regression Analysis


Book Description

Concise, mathematically clear, and comprehensive treatment of the subject. * Expanded coverage of diagnostics and methods of model fitting. * Requires no specialized knowledge beyond a good grasp of matrix algebra and some acquaintance with straight-line regression and simple analysis of variance models. * More than 200 problems throughout the book plus outline solutions for the exercises. * This revision has been extensively class-tested.




Discriminant Analysis and Statistical Pattern Recognition


Book Description

The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "For both applied and theoretical statisticians as well as investigators working in the many areas in which relevant use can be made of discriminant techniques, this monograph provides a modern, comprehensive, and systematic account of discriminant analysis, with the focus on the more recent advances in the field." –SciTech Book News ". . . a very useful source of information for any researcher working in discriminant analysis and pattern recognition." –Computational Statistics Discriminant Analysis and Statistical Pattern Recognition provides a systematic account of the subject. While the focus is on practical considerations, both theoretical and practical issues are explored. Among the advances covered are regularized discriminant analysis and bootstrap-based assessment of the performance of a sample-based discriminant rule, and extensions of discriminant analysis motivated by problems in statistical image analysis. The accompanying bibliography contains over 1,200 references.