Limitations and Future Applications of Quantum Cryptography


Book Description

The concept of quantum computing is based on two fundamental principles of quantum mechanics: superposition and entanglement. Instead of using bits, qubits are used in quantum computing, which is a key indicator in the high level of safety and security this type of cryptography ensures. If interfered with or eavesdropped in, qubits will delete or refuse to send, which keeps the information safe. This is vital in the current era where sensitive and important personal information can be digitally shared online. In computer networks, a large amount of data is transferred worldwide daily, including anything from military plans to a country’s sensitive information, and data breaches can be disastrous. This is where quantum cryptography comes into play. By not being dependent on computational power, it can easily replace classical cryptography. Limitations and Future Applications of Quantum Cryptography is a critical reference that provides knowledge on the basics of IoT infrastructure using quantum cryptography, the differences between classical and quantum cryptography, and the future aspects and developments in this field. The chapters cover themes that span from the usage of quantum cryptography in healthcare, to forensics, and more. While highlighting topics such as 5G networks, image processing, algorithms, and quantum machine learning, this book is ideally intended for security professionals, IoT developers, computer scientists, practitioners, researchers, academicians, and students interested in the most recent research on quantum computing.




Quantum Computing


Book Description

Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.




Internet - Technical Development and Applications


Book Description

Internet technologies and systems are nowadays the key enablers of digital economy and modern world-wide connected society. This contributed book is a collection of cautiously chosen articles delivered by specialists with significant level of expertise in the domain of Internet technical foundations and its applications. The content of the book is divided into three parts: Internet - technical fundamentals and applications Information management systems Information security in distributed computer systems This book is a reference tool prepared for scientists and other persons involved in designing, implementation and evaluation of internet technologies. Its readers can be found among researchers, teachers and also students of computer science and related disciplines.




Handbook of Research on Quantum Computing for Smart Environments


Book Description

Today, computation is an essential component of every technology. However, there has not been much research on quantum computing, even though it has the capability to solve complex problems in an efficient way. Further study is required to fully understand the uses and benefits of this technology. The Handbook of Research on Quantum Computing for Smart Environments presents investigating physical realizations of quantum computers, encoders, and decoders, including photonic quantum realization, cavity quantum electrodynamics, and many more topics on Bits to Qubits. Covering key topics such as machine learning, software, quantum algorithms, and neural networks, this major reference work is ideal for engineers, computer scientists, physicists, mathematicians, researchers, academicians, scholars, practitioners, instructors, and students.




Applied Quantum Cryptography


Book Description

Using the quantum properties of single photons to exchange binary keys between two partners for subsequent encryption of secret data is an absolutely novel te- nology. Only a few years ago quantum cryptography – or better Quantum Key Distribution – was the domain of basic research laboratories at universities. But during the last few years things changed. Quantum Key Distribution or QKD left the laboratories and was picked up by more practical-oriented teams that worked hard to develop a practically applicable technology out of the astonishing results of basic research. One major milestone toward a QKD technology was a large research and dev- opment project funded by the European Commission that aimed at combining qu- tum physics with complementary technologies that are necessary to create a tech- cal solution: electronics, software, and network components were added within the project SECOQC (Development of a Global Network for Secure Communication based on Quantum Cryptography) that teamed up all expertise on European level to get a technology for future cryptography.




Frontiers of Engineering


Book Description

This volume presents papers on the topics covered at the National Academy of Engineering's 2018 US Frontiers of Engineering Symposium. Every year the symposium brings together 100 outstanding young leaders in engineering to share their cutting-edge research and innovations in selected areas. The 2018 symposium was held September 5-7 and hosted by MIT Lincoln Laboratory in Lexington, Massachusetts. The intent of this book is to convey the excitement of this unique meeting and to highlight innovative developments in engineering research and technical work.




Quantum Computing in Cybersecurity


Book Description

Machine learning, deep learning, probabilistic neural networks, blockchain, and other new technologies all demand extremely high processing speeds. A quantum computer is an example of such a system. Quantum computers may be accessed over the internet. This technology poses a significant risk, since quantum terrorists, or cyber criminals, coul be able to cause many problems, including bringing down the internet. The principles of quantum mechanics might be used by evil doers to destroy quantum information on a global scale, and an entire class of suspicious codes could destroy data or eavesdrop on communication. Quantum physics, however, safeguards against data eavesdropping. A significant amount of money is being invested in developing and testing a quantum version of the internet that will eliminate eavesdropping and make communication nearly impenetrable to cyber-attacks. The simultaneous activation of quantum terrorists (organized crime) can lead to significant danger by attackers introducing quantum information into the network, breaking the global quantum state, and preventing the system from returning to its starting state. Without signs of identifying information and real-time communication data, such vulnerabilities are very hard to discover. Terrorists' synchronized and coordinated acts have an impact on security by sparking a cyber assault in a fraction of a second. The encryption is used by cyber-criminal groups with the genuine, nefarious, and terrible motives of killing innocent people or stealing money. In the hands of criminals and codes, cryptography is a dangerous and formidable weapon. Small amounts of digital information are hidden in a code string that translates into an image on the screen, making it impossible for the human eye to identify a coded picture from its uncoded equivalents. To steal the cryptographic key necessary to read people's credit card data or banking information, cyber thieves employ installed encryption techniques, human mistakes, keyboard loggers, and computer malware. This new volume delves into the latest cutting-edge trends and the most up-to-date processes and applications for quantum computing to bolster cybersecurity. Whether for the veteran computer engineer working in the field, other computer scientists and professionals, or for the student, this is a one-stop-shop for quantum computing in cyber security and a must have for any library.




Quantum Blockchain


Book Description

QUANTUM BLOCKCHAIN While addressing the security challenges and threats in blockchain, this book is also an introduction to quantum cryptography for engineering researchers and students in the realm of information security. Quantum cryptography is the science of exploiting quantum mechanical properties to perform cryptographic tasks. By utilizing unique quantum features of nature, quantum cryptography methods offer everlasting security. The applicability of quantum cryptography is explored in this book. It describes the state-of-the-art of quantum blockchain techniques and sketches how they can be implemented in standard communication infrastructure. Highlighting a wide range of topics such as quantum cryptography, quantum blockchain, post-quantum blockchain, and quantum blockchain in Industry 4.0, this book also provides the future research directions of quantum blockchain in terms of quantum resilience, data management, privacy issues, sustainability, scalability, and quantum blockchain interoperability. Above all, it explains the mathematical ideas that underpin the methods of post-quantum cryptography security. Readers will find in this book a comprehensiveness of the subject including: The key principles of quantum computation that solve the factoring issue. A discussion of a variety of potential post-quantum public-key encryption and digital signature techniques. Explanations of quantum blockchain in cybersecurity, healthcare, and Industry 4.0. Audience The book is for security analysts, data scientists, vulnerability analysts, professionals, academicians, researchers, industrialists, and students working in the fields of (quantum) blockchain, cybersecurity, cryptography, and artificial intelligence with regard to smart cities and Internet of Things.




Quantum Cryptography and the Future of Cyber Security


Book Description

The shortcomings of modern cryptography and its weaknesses against computers that are becoming more powerful necessitate serious consideration of more robust security options. Quantum cryptography is sound, and its practical implementations are becoming more mature. Many applications can use quantum cryptography as a backbone, including key distribution, secure direct communications, large prime factorization, e-commerce, e-governance, quantum internet, and more. For this reason, quantum cryptography is gaining interest and importance among computer and security professionals. Quantum Cryptography and the Future of Cyber Security is an essential scholarly resource that provides the latest research and advancements in cryptography and cyber security through quantum applications. Highlighting a wide range of topics such as e-commerce, machine learning, and privacy, this book is ideal for security analysts, systems engineers, software security engineers, data scientists, vulnerability analysts, professionals, academicians, researchers, security professionals, policymakers, and students.




Modern Electronics Devices and Communication Systems


Book Description

This book presents select and peer-reviewed proceedings of the International Conference on Smart Communication and Imaging Systems (MEDCOM 2021). The contents explore the recent technological advances in the field of next-generation electronics devices and communication systems. The topics include the design and development of smart, secure, and reliable future communication networks; satellite, radar, and microwave techniques for intelligent communication. The book also covers methods and applications of GIS and remote sensing; medical image analysis and its applications in smart health. This book can be useful for students, researchers, and professionals working in the field of communication systems and image processing.