Linear Algebra for Quantum Theory


Book Description

Essential mathematical tools for the study of modern quantumtheory. Linear Algebra for Quantum Theory offers an excellent survey ofthose aspects of set theory and the theory of linear spaces andtheir mappings that are indispensable to the study of quantumtheory. Unlike more conventional treatments, this text postponesits discussion of the binary product concept until later chapters,thus allowing many important properties of the mappings to bederived without it. The book begins with a thorough exploration of set theoryfundamentals, including mappings, cardinalities of sets, andarithmetic and theory of complex numbers. Next is an introductionto linear spaces, with coverage of linear operators, eigenvalue andthe stability problem of linear operators, and matrices withspecial properties. Material on binary product spaces features self-adjoint operatorsin a space of indefinite metric, binary product spaces with apositive definite metric, properties of the Hilbert space, andmore. The final section is devoted to axioms of quantum theoryformulated as trace algebra. Throughout, chapter-end problem setshelp reinforce absorption of the material while letting readerstest their problem-solving skills. Ideal for advanced undergraduate and graduate students intheoretical and computational chemistry and physics, Linear Algebrafor Quantum Theory provides the mathematical means necessary toaccess and understand the complex world of quantum theory.




Quantum Mechanics in Simple Matrix Form


Book Description

With this text, basic quantum mechanics becomes accessible to undergraduates with no background in mathematics beyond algebra. Includes more than 100 problems and 38 figures. 1986 edition.




Introduction to Quantum Algorithms via Linear Algebra, second edition


Book Description

Quantum computing explained in terms of elementary linear algebra, emphasizing computation and algorithms and requiring no background in physics. This introduction to quantum algorithms is concise but comprehensive, covering many key algorithms. It is mathematically rigorous but requires minimal background and assumes no knowledge of quantum theory or quantum mechanics. The book explains quantum computation in terms of elementary linear algebra; it assumes the reader will have some familiarity with vectors, matrices, and their basic properties, but offers a review of the relevant material from linear algebra. By emphasizing computation and algorithms rather than physics, it makes quantum algorithms accessible to students and researchers in computer science who have not taken courses in quantum physics or delved into fine details of quantum effects, apparatus, circuits, or theory.




Linear Operators for Quantum Mechanics


Book Description

Suitable for advanced undergraduates and graduate students, this compact treatment examines linear space, functionals, and operators; diagonalizing operators; operator algebras; and equations of motion. 1969 edition.




Quantum Algorithms via Linear Algebra


Book Description

Quantum computing explained in terms of elementary linear algebra, emphasizing computation and algorithms and requiring no background in physics. This introduction to quantum algorithms is concise but comprehensive, covering many key algorithms. It is mathematically rigorous but requires minimal background and assumes no knowledge of quantum theory or quantum mechanics. The book explains quantum computation in terms of elementary linear algebra; it assumes the reader will have some familiarity with vectors, matrices, and their basic properties, but offers a review of all the relevant material from linear algebra. By emphasizing computation and algorithms rather than physics, this primer makes quantum algorithms accessible to students and researchers in computer science without the complications of quantum mechanical notation, physical concepts, and philosophical issues. After explaining the development of quantum operations and computations based on linear algebra, the book presents the major quantum algorithms, from seminal algorithms by Deutsch, Jozsa, and Simon through Shor's and Grover's algorithms to recent quantum walks. It covers quantum gates, computational complexity, and some graph theory. Mathematical proofs are generally short and straightforward; quantum circuits and gates are used to illuminate linear algebra; and the discussion of complexity is anchored in computational problems rather than machine models. Quantum Algorithms via Linear Algebra is suitable for classroom use or as a reference for computer scientists and mathematicians.




Quantum Computing


Book Description

Covering both theory and progressive experiments, Quantum Computing: From Linear Algebra to Physical Realizations explains how and why superposition and entanglement provide the enormous computational power in quantum computing. This self-contained, classroom-tested book is divided into two sections, with the first devoted to the theoretical aspect




Quantum Theory, Groups and Representations


Book Description

This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.




Mathematics of Classical and Quantum Physics


Book Description

Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.




Linear Algebra Problem Book


Book Description

Linear Algebra Problem Book can be either the main course or the dessert for someone who needs linear algebraand today that means every user of mathematics. It can be used as the basis of either an official course or a program of private study. If used as a course, the book can stand by itself, or if so desired, it can be stirred in with a standard linear algebra course as the seasoning that provides the interest, the challenge, and the motivation that is needed by experienced scholars as much as by beginning students. The best way to learn is to do, and the purpose of this book is to get the reader to DO linear algebra. The approach is Socratic: first ask a question, then give a hint (if necessary), then, finally, for security and completeness, provide the detailed answer.




Quantum Mechanics for Mathematicians


Book Description

Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.