Linear and nonlinear optical Zn(II)-metal-organic materials. Correlation between molecular structure, crystal structure and chemical-physical properties


Book Description

Research Paper (postgraduate) from the year 2015 in the subject Chemistry - Other, grade: Subventionierte Projekt, University of Dortmund (Institut für Umweltforschung , Lehrstuhl für Analytische Chemie), language: English, abstract: This book deals with chemistry and chemical-physical effects of Zn(II)-containing metal-organics with emergence as an interdisciplinary area of coordination chemistry, blending of optical and nonlinear optical materials research; optical fiber communication and optical computing technologies; data storage techniques; image processing; dynamic holography; printers; producing of harmonic generators; optical switching and limiting devices; fluorescence materials and more. In this context, the book collects new trends, and presents for first time more recent work in the field of applied oriented design of molecular scaffolds, synthesis, optical and nonlinear optical studies of coordination compounds of Zn(II)-ion. The book is divided into four chapters. The first Chapter 1 is designed to give readers a general overview on relevance of metal-organic materials containing metal ions with completed electronic d10 configurations to mentioned above areas of applied sciences. We have chosen to introduce relationship between molecular structure and properties of zinc tris(thiourea) sulphate and its derivatives in a short Chapter 2, because of those compounds are seriously tested for an industrial scale application as NLO-phores. Chapter 3 is devoted, principally, to a correlation between molecular structure, crystal structure and chemical physical effects of Zn(II)-containing metal-organic materials, mainly part of our research work. Chapter 4 concentrates on theoretical methodological formalism of most applicable quantum chemical methods, treating optical and non-linear optical phenomena, which are base on same thematic overall organization of this part of the book. The importance of this chapter is that it refers to basic computational chemistry methodology, associated with prediction of chemical-physical effects of metal-organics in gas- and condense phase, as a crucial step defining applied oriented chemical synthesis of new coordination compounds, thus producing results relevant to their real application as materials to optical and nonlinear optical technologies. Chapter 4 can serves as methodological reference point. But the content of the book, generally, can be useful to scientific research of MSc and PhD students in “Chemistry”, which work involves fields such as coordination chemistry, applied materials research, crystal engineering, and the fourth.




Comprehensive Nanoscience and Technology


Book Description

From the Introduction: Nanotechnology and its underpinning sciences are progressing with unprecedented rapidity. With technical advances in a variety of nanoscale fabrication and manipulation technologies, the whole topical area is maturing into a vibrant field that is generating new scientific research and a burgeoning range of commercial applications, with an annual market already at the trillion dollar threshold. The means of fabricating and controlling matter on the nanoscale afford striking and unprecedented opportunities to exploit a variety of exotic phenomena such as quantum, nanophotonic and nanoelectromechanical effects. Moreover, researchers are elucidating new perspectives on the electronic and optical properties of matter because of the way that nanoscale materials bridge the disparate theories describing molecules and bulk matter. Surface phenomena also gain a greatly increased significance; even the well-known link between chemical reactivity and surface-to-volume ratio becomes a major determinant of physical properties, when it operates over nanoscale dimensions. Against this background, this comprehensive work is designed to address the need for a dynamic, authoritative and readily accessible source of information, capturing the full breadth of the subject. Its six volumes, covering a broad spectrum of disciplines including material sciences, chemistry, physics and life sciences, have been written and edited by an outstanding team of international experts. Addressing an extensive, cross-disciplinary audience, each chapter aims to cover key developments in a scholarly, readable and critical style, providing an indispensible first point of entry to the literature for scientists and technologists from interdisciplinary fields. The work focuses on the major classes of nanomaterials in terms of their synthesis, structure and applications, reviewing nanomaterials and their respective technologies in well-structured and comprehensive articles with extensive cross-references. It has been a constant surprise and delight to have found, amongst the rapidly escalating number who work in nanoscience and technology, so many highly esteemed authors willing to contribute. Sharing our anticipation of a major addition to the literature, they have also captured the excitement of the field itself in each carefully crafted chapter. Along with our painstaking and meticulous volume editors, full credit for the success of this enterprise must go to these individuals, together with our thanks for (largely) adhering to the given deadlines. Lastly, we record our sincere thanks and appreciation for the skills and professionalism of the numerous Elsevier staff who have been involved in this project, notably Fiona Geraghty, Megan Palmer and Greg Harris, and especially Donna De Weerd-Wilson who has steered it through from its inception. We have greatly enjoyed working with them all, as we have with each other.







NBS Special Publication


Book Description




Publications


Book Description










Journal


Book Description

This notebook is perfect for you and your needs. With 50-150 lined pages it has enough room for you to jot, write, and scribble all your notes, thoughts and secrets. Check out Jay Wilson on Amazon for more designs and books that will fit your every need.What are you waiting for?If you would like to submit ides for a notebook cover or would like to submit a photo, I do give credit for photos where I know the photographer. Send me an email at [email protected] If you are the owner of a photo on one notebook and I have failed to credit you, send me an email and I will update the book to give you the rightful credit. Please accept my apology for using the image without giving credit. Thank you. Check out more poetry and writing on my instagram account. jay_wilson_the_writer




Nonlinear Optical Materials


Book Description

Mathematical methods play a significant role in the rapidly growing field of nonlinear optical materials. This volume discusses a number of successful or promising contributions. The overall theme of this volume is twofold: (1) the challenges faced in computing and optimizing nonlinear optical material properties; and (2) the exploitation of these properties in important areas of application. These include the design of optical amplifiers and lasers, as well as novel optical switches. Research topics in this volume include how to exploit the magnetooptic effect, how to work with the nonlinear optical response of materials, how to predict laser-induced breakdown in efficient optical devices, and how to handle electron cloud distortion in femtosecond processes.