Linear And Nonlinear Wave Propagation


Book Description

Waves are essential phenomena in most scientific and engineering disciplines, such as electromagnetism and optics, and different mechanics including fluid, solid, structural, quantum, etc. They appear in linear and nonlinear systems. Some can be observed directly and others are not. The features of the waves are usually described by solutions to either linear or nonlinear partial differential equations, which are fundamental to the students and researchers.Generic equations, describing wave and pulse propagation in linear and nonlinear systems, are introduced and analyzed as initial/boundary value problems. These systems cover the general properties of non-dispersive and dispersive, uniform and non-uniform, with/without dissipations. Methods of analyses are introduced and illustrated with analytical solutions. Wave-wave and wave-particle interactions ascribed to the nonlinearity of media (such as plasma) are discussed in the final chapter.This interdisciplinary textbook is essential reading for anyone in above mentioned disciplines. It was prepared to provide students with an understanding of waves and methods of solving wave propagation problems. The presentation is self-contained and should be read without difficulty by those who have adequate preparation in classic mechanics. The selection of topics and the focus given to each provide essential materials for a lecturer to cover the bases in a linear/nonlinear wave course.




Linear and Nonlinear Waves


Book Description

Now in an accessible paperback edition, this classic work is just as relevant as when it first appeared in 1974, due to the increased use of nonlinear waves. It covers the behavior of waves in two parts, with the first part addressing hyperbolic waves and the second addressing dispersive waves. The mathematical principles are presented along with examples of specific cases in communications and specific physical fields, including flood waves in rivers, waves in glaciers, traffic flow, sonic booms, blast waves, and ocean waves from storms.




Introduction to Wave Propagation in Nonlinear Fluids and Solids


Book Description

Waves occur widely in nature and have innumerable commercial uses. Pressure waves are responsible for the transmission of speech, bow waves created by meteors can virtually ignite the earth's atmosphere, ultrasonic waves are used for medical imaging, and shock waves are used for the synthesis of new materials. This book provides a thorough, modern introduction to the study of linear and nonlinear waves. Beginning with fundamental concepts of motion, the book goes on to discuss linear and nonlinear mechanical waves, thermodynamics, and constitutive models. It covers gases, liquids, and solids as integral parts of the subject. Among the important areas of research and application are impact analysis, shock wave research, explosive detonation, nonlinear acoustics, and hypersonic aerodynamics. Graduate students, as well as professional engineers and applied physicists, will value this clear, comprehensive introduction to the study of wave phenomena.




Nonlinear Periodic Waves and Their Modulations


Book Description

Although the mathematical theory of nonlinear waves and solitons has made great progress, its applications to concrete physical problems are rather poor, especially when compared with the classical theory of linear dispersive waves and nonlinear fluid motion. The Whitham method, which describes the combining action of the dispersive and nonlinear effects as modulations of periodic waves, is not widely used by applied mathematicians and physicists, though it provides a direct and natural way to treat various problems in nonlinear wave theory. Therefore it is topical to describe recent developments of the Whitham theory in a clear and simple form suitable for applications in various branches of physics.This book develops the techniques of the theory of nonlinear periodic waves at elementary level and in great pedagogical detail. It provides an introduction to a Whitham's theory of modulation in a form suitable for applications. The exposition is based on a thorough analysis of representative examples taken from fluid mechanics, nonlinear optics and plasma physics rather than on the formulation and study of a mathematical theory. Much attention is paid to physical motivations of the mathematical methods developed in the book. The main applications considered include the theory of collisionless shock waves in dispersive systems and the nonlinear theory of soliton formation in modulationally unstable systems. Exercises are provided to amplify the discussion of important topics such as singular perturbation theory, Riemann invariants, the finite gap integration method, and Whitham equations and their solutions.




Nonlinear Optical Waves


Book Description

A non-linear wave is one of the fundamental objects of nature. They are inherent to aerodynamics and hydrodynamics, solid state physics and plasma physics, optics and field theory, chemistry reaction kinetics and population dynamics, nuclear physics and gravity. All non-linear waves can be divided into two parts: dispersive waves and dissipative ones. The history of investigation of these waves has been lasting about two centuries. In 1834 J. S. Russell discovered the extraordinary type of waves without the dispersive broadening. In 1965 N. J. Zabusky and M. D. Kruskal found that the Korteweg-de Vries equation has solutions of the solitary wave form. This solitary wave demonstrates the particle-like properties, i. e. , stability under propagation and the elastic interaction under collision of the solitary waves. These waves were named solitons. In succeeding years there has been a great deal of progress in understanding of soliton nature. Now solitons have become the primary components in many important problems of nonlinear wave dynamics. It should be noted that non-linear optics is the field, where all soliton features are exhibited to a great extent. This book had been designed as the tutorial to the theory of non-linear waves in optics. The first version was projected as the book covering all the problems in this field, both analytical and numerical methods, and results as well. However, it became evident in the process of work that this was not a real task.




Linear and Nonlinear Waves in Microstructured Solids


Book Description

This book uses asymptotic methods to obtain simple approximate analytic solutions to various problems within mechanics, notably wave processes in heterogeneous materials. Presenting original solutions to common issues within mechanics, this book builds upon years of research to demonstrate the benefits of implementing asymptotic techniques within mechanical engineering and material science. Focusing on linear and nonlinear wave phenomena in complex micro-structured solids, the book determines their global characteristics through analysis of their internal structure, using homogenization and asymptotic procedures, in line with the latest thinking within the field. The book’s cutting-edge methodology can be applied to optimal design, non-destructive control and in deep seismic sounding, providing a valuable alternative to widely used numerical methods. Using case studies, the book covers topics such as elastic waves in nonhomogeneous materials, regular and chaotic dynamics based on continualisation and discretization and vibration localization in 1D Linear and Nonlinear lattices. The book will be of interest to students, research engineers, and professionals specialising in mathematics and physics as well as mechanical and civil engineering.




Nonlinear Waves in Integrable and Non-integrable Systems


Book Description

Nonlinear Waves in Integrable and Nonintegrable Systems presents cutting-edge developments in the theory and experiments of nonlinear waves. Its comprehensive coverage of analytical and numerical methods for nonintegrable systems is the first of its kind. This book is intended for researchers and graduate students working in applied mathematics and various physical subjects where nonlinear wave phenomena arise (such as nonlinear optics, Bose-Einstein condensates, and fluid dynamics).




Nonlinear Dynamics


Book Description

This self-contained treatment covers all aspects of nonlinear dynamics, from fundamentals to recent developments, in a unified and comprehensive way. Numerous examples and exercises will help the student to assimilate and apply the techniques presented.




Dynamics of Lattice Materials


Book Description

Provides a comprehensive introduction to the dynamic response of lattice materials, covering the fundamental theory and applications in engineering practice Offers comprehensive treatment of dynamics of lattice materials and periodic materials in general, including phononic crystals and elastic metamaterials Provides an in depth introduction to elastostatics and elastodynamics of lattice materials Covers advanced topics such as damping, nonlinearity, instability, impact and nanoscale systems Introduces contemporary concepts including pentamodes, local resonance and inertial amplification Includes chapters on fast computation and design optimization tools Topics are introduced using simple systems and generalized to more complex structures with a focus on dispersion characteristics




Nonlinear Waves


Book Description

The outcome of a conference held in East Carolina University in June 1982, this book provides an account of developments in the theory and application of nonlinear waves in both fluids and plasmas. Twenty-two contributors from eight countries here cover all the main fields of research, including nonlinear water waves, K-dV equations, solitions and inverse scattering transforms, stability of solitary waves, resonant wave interactions, nonlinear evolution equations, nonlinear wave phenomena in plasmas, recurrence phenomena in nonlinear wave systems, and the structure and dynamics of envelope solitions in plasmas.