Linear Factor Models in Finance


Book Description

The determination of the values of stocks, bonds, options, futures, and derivatives is done by the scientific process of asset pricing, which has developed dramatically in the last few years due to advances in financial theory and econometrics. This book covers the science of asset pricing by concentrating on the most widely used modelling technique called: Linear Factor Modelling.Linear Factor Models covers an important area for Quantitative Analysts/Investment Managers who are developing Quantitative Investment Strategies. Linear factor models (LFM) are part of modern investment processes that include asset valuation, portfolio theory and applications, linear factor models and applications, dynamic asset allocation strategies, portfolio performance measurement, risk management, international perspectives, and the use of derivatives. The book develops the building blocks for one of the most important theories of asset pricing - Linear Factor Modelling. Within this framework, we can include other asset pricing theories such as the Capital Asset Pricing Model (CAPM), arbitrage pricing theory and various pricing formulae for derivatives and option prices. As a bare minimum, the reader of this book must have a working knowledge of basic calculus, simple optimisation and elementary statistics. In particular, the reader must be comfortable with the algebraic manipulation of means, variances (and covariances) of linear combination(s) of random variables. Some topics may require a greater mathematical sophistication.* Covers the latest methods in this area.* Combines actual quantitative finance experience with analytical research rigour* Written by both quantitative analysts and academics who work in this area




Reproducible Finance with R


Book Description

Reproducible Finance with R: Code Flows and Shiny Apps for Portfolio Analysis is a unique introduction to data science for investment management that explores the three major R/finance coding paradigms, emphasizes data visualization, and explains how to build a cohesive suite of functioning Shiny applications. The full source code, asset price data and live Shiny applications are available at reproduciblefinance.com. The ideal reader works in finance or wants to work in finance and has a desire to learn R code and Shiny through simple, yet practical real-world examples. The book begins with the first step in data science: importing and wrangling data, which in the investment context means importing asset prices, converting to returns, and constructing a portfolio. The next section covers risk and tackles descriptive statistics such as standard deviation, skewness, kurtosis, and their rolling histories. The third section focuses on portfolio theory, analyzing the Sharpe Ratio, CAPM, and Fama French models. The book concludes with applications for finding individual asset contribution to risk and for running Monte Carlo simulations. For each of these tasks, the three major coding paradigms are explored and the work is wrapped into interactive Shiny dashboards.




Portfolio Diversification


Book Description

Portfolio Diversification provides an update on the practice of combining several risky investments in a portfolio with the goal of reducing the portfolio's overall risk. In this book, readers will find a comprehensive introduction and analysis of various dimensions of portfolio diversification (assets, maturities, industries, countries, etc.), along with time diversification strategies (long term vs. short term diversification) and diversification using other risk measures than variance. Several tools to quantify and implement optimal diversification are discussed and illustrated. - Focuses on portfolio diversification across all its dimensions - Includes recent empirical material that was created and developed specifically for this book - Provides several tools to quantify and implement optimal diversification




Multi-factor Models and Signal Processing Techniques


Book Description

With recent outbreaks of multiple large-scale financial crises, amplified by interconnected risk sources, a new paradigm of fund management has emerged. This new paradigm leverages “embedded” quantitative processes and methods to provide more transparent, adaptive, reliable and easily implemented “risk assessment-based” practices. This book surveys the most widely used factor models employed within the field of financial asset pricing. Through the concrete application of evaluating risks in the hedge fund industry, the authors demonstrate that signal processing techniques are an interesting alternative to the selection of factors (both fundamentals and statistical factors) and can provide more efficient estimation procedures, based on lq regularized Kalman filtering for instance. With numerous illustrative examples from stock markets, this book meets the needs of both finance practitioners and graduate students in science, econometrics and finance. Contents Foreword, Rama Cont. 1. Factor Models and General Definition. 2. Factor Selection. 3. Least Squares Estimation (LSE) and Kalman Filtering (KF) for Factor Modeling: A Geometrical Perspective. 4. A Regularized Kalman Filter (rgKF) for Spiky Data. Appendix: Some Probability Densities. About the Authors Serge Darolles is Professor of Finance at Paris-Dauphine University, Vice-President of QuantValley, co-founder of QAMLab SAS, and member of the Quantitative Management Initiative (QMI) scientific committee. His research interests include financial econometrics, liquidity and hedge fund analysis. He has written numerous articles, which have been published in academic journals. Patrick Duvaut is currently the Research Director of Telecom ParisTech, France. He is co-founder of QAMLab SAS, and member of the Quantitative Management Initiative (QMI) scientific committee. His fields of expertise encompass statistical signal processing, digital communications, embedded systems and QUANT finance. Emmanuelle Jay is co-founder and President of QAMLab SAS. She has worked at Aequam Capital as co-head of R&D since April 2011 and is member of the Quantitative Management Initiative (QMI) scientific committee. Her research interests include SP for finance, quantitative and statistical finance, and hedge fund analysis.




Asset Pricing


Book Description

Winner of the prestigious Paul A. Samuelson Award for scholarly writing on lifelong financial security, John Cochrane's Asset Pricing now appears in a revised edition that unifies and brings the science of asset pricing up to date for advanced students and professionals. Cochrane traces the pricing of all assets back to a single idea—price equals expected discounted payoff—that captures the macro-economic risks underlying each security's value. By using a single, stochastic discount factor rather than a separate set of tricks for each asset class, Cochrane builds a unified account of modern asset pricing. He presents applications to stocks, bonds, and options. Each model—consumption based, CAPM, multifactor, term structure, and option pricing—is derived as a different specification of the discounted factor. The discount factor framework also leads to a state-space geometry for mean-variance frontiers and asset pricing models. It puts payoffs in different states of nature on the axes rather than mean and variance of return, leading to a new and conveniently linear geometrical representation of asset pricing ideas. Cochrane approaches empirical work with the Generalized Method of Moments, which studies sample average prices and discounted payoffs to determine whether price does equal expected discounted payoff. He translates between the discount factor, GMM, and state-space language and the beta, mean-variance, and regression language common in empirical work and earlier theory. The book also includes a review of recent empirical work on return predictability, value and other puzzles in the cross section, and equity premium puzzles and their resolution. Written to be a summary for academics and professionals as well as a textbook, this book condenses and advances recent scholarship in financial economics.




An Introduction to Mathematical Finance with Applications


Book Description

This textbook aims to fill the gap between those that offer a theoretical treatment without many applications and those that present and apply formulas without appropriately deriving them. The balance achieved will give readers a fundamental understanding of key financial ideas and tools that form the basis for building realistic models, including those that may become proprietary. Numerous carefully chosen examples and exercises reinforce the student’s conceptual understanding and facility with applications. The exercises are divided into conceptual, application-based, and theoretical problems, which probe the material deeper. The book is aimed toward advanced undergraduates and first-year graduate students who are new to finance or want a more rigorous treatment of the mathematical models used within. While no background in finance is assumed, prerequisite math courses include multivariable calculus, probability, and linear algebra. The authors introduce additional mathematical tools as needed. The entire textbook is appropriate for a single year-long course on introductory mathematical finance. The self-contained design of the text allows for instructor flexibility in topics courses and those focusing on financial derivatives. Moreover, the text is useful for mathematicians, physicists, and engineers who want to learn finance via an approach that builds their financial intuition and is explicit about model building, as well as business school students who want a treatment of finance that is deeper but not overly theoretical.




Empirical Asset Pricing


Book Description

An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.




Asset Management


Book Description

Stocks and bonds? Real estate? Hedge funds? Private equity? If you think those are the things to focus on in building an investment portfolio, Andrew Ang has accumulated a body of research that will prove otherwise. In this book, Ang upends the conventional wisdom about asset allocation by showing that what matters aren't asset class labels but the bundles of overlapping risks they represent.




Investment Management for Insurers


Book Description

Investment Management for Insurers details all phases of the investment management process for insurers as well as fixed income instruments and derivatives and state-of-the-art analytical tools for valuing securities and measuring risk. Complete coverage includes: a general overview of issues, fixed income products, valuation, measuring and controlling interest rate risk, and equity portfolio management.




Portfolio Construction and Analytics


Book Description

A detailed, multi-disciplinary approach to investment analytics Portfolio Construction and Analytics provides an up-to-date understanding of the analytic investment process for students and professionals alike. With complete and detailed coverage of portfolio analytics and modeling methods, this book is unique in its multi-disciplinary approach. Investment analytics involves the input of a variety of areas, and this guide provides the perspective of data management, modeling, software resources, and investment strategy to give you a truly comprehensive understanding of how today's firms approach the process. Real-world examples provide insight into analytics performed with vendor software, and references to analytics performed with open source software will prove useful to both students and practitioners. Portfolio analytics refers to all of the methods used to screen, model, track, and evaluate investments. Big data, regulatory change, and increasing risk is forcing a need for a more coherent approach to all aspects of investment analytics, and this book provides the strong foundation and critical skills you need. Master the fundamental modeling concepts and widely used analytics Learn the latest trends in risk metrics, modeling, and investment strategies Get up to speed on the vendor and open-source software most commonly used Gain a multi-angle perspective on portfolio analytics at today's firms Identifying investment opportunities, keeping portfolios aligned with investment objectives, and monitoring risk and performance are all major functions of an investment firm that relies heavily on analytics output. This reliance will only increase in the face of market changes and increased regulatory pressure, and practitioners need a deep understanding of the latest methods and models used to build a robust investment strategy. Portfolio Construction and Analytics is an invaluable resource for portfolio management in any capacity.