Liquefaction Mitigation of Silty Soils Using Dynamic Compaction


Book Description

Liquefaction of saturated loose granular sand and non-plastic silty sand deposits during seismic loading has caused significant damage to structures and highway systems in almost all major earthquakes. Sand deposits densified by dynamic compaction (DC) are more resistant to liquefaction, and have performed well during earthquakes. Silty sand deposits appear to densify and perform well when improved by DC supplemented with wick drains. current practice for evaluating feasibility and choosing the operational parameters of the DC technique at a site depends mainly on field trials, past experience at similar sites, and empirical equations based on reported records. Rational analytical methods are needed to improve the state of practice. This dissertation presents an analytical simulation model for the densification process of saturated sand deposits without wick drains, and silty deposits supplemented with wick drains during DC. Pore pressure generated during DC processes is simulated based on an energy based liquefaction model. The densification during dissipation is modeled using consolidation theory. Based on the model effects of silt content, hydraulic conductivity, initial soil density and techniques' operational parameters such as energy per impact, number of impacts per location, impact grid pattern, impact grid spacing, wick drains spacing, and time cycle between impacts on the densification of soils improved by DC have been studied. The model performance has also been verified through documented case histories and found to compare reasonably well. A rational design procedure has been developed for liquefaction mitigation of loose sand and non-plastic silty soils. The design model has been used to determine the densification achievable using DC in silty deposits supplemented with wick drains. A design procedure and design examples are presented. The computational methodology presented herein is a powerful tool for design analyses of DC taking into account the site conditions for different deposits and operational parameters. The model is expected to advance the use of DC in sands and silty soils, and reduce the reliance on expensive field trials as a design tool.







Liquefaction Mitigation in Silty Soils Using Stone Columns Supplemented with Wick Drains


Book Description

Vibro replacement stone columns are in use to mitigate liquefaction hazards in sandy soils for almost three decades. There are three mechanisms that help reduce liquefaction potential of a sandy soil improved using stone columns. During stone column installation sandy soils densify due to installation vibration. Further, the stiffness of the composite improved soil increases leading to a reduction in cyclic shear stress induced on the soil surrounding the stone columns during earthquakes. In addition, pore pressures generated in the soil during earthquakes are quickly dissipated through the highly permeable stone columns. These combined mechanisms reduce the liquefaction potential of the improved soil. Sandy soil sites improved using stone columns have performed well during earthquakes. However, its effectiveness in silty soils is limited. Recent case histories show stone columns supplemented with wick drains work well in such soils. This study focuses on three aspects: (i) examining the reasons for the sub-performance of stone columns in silty soils, identifying key soil parameters that hinder the effectiveness of stone columns, and developing means to improve the effectiveness of this method in silty soils including provision of supplementary wick drains, (ii) developing a numerical model to simulate stone column installation with and without wick drains, and qualitatively evaluate the degree of ground improvement, and (iii) verifying the numerical simulation results using case histories and field experimental studies, and developing modified design charts and guidelines for designing stone columns with and without wick drains to improve sands and silty soils. Pore pressure generation, post-liquefaction dissipation, and densification characteristics of an artificial silty soil and three natural silty soils were experimentally studied and compared with sand. A careful analysis of such data indicates that liquefaction characteristics of silty soils and sands are not very different when compared using grain contact density indices as the basis for comparison. However, post-liquefaction dissipation characteristics are very much dependent on grain size characteristics. Low coefficient of consolidation associated with silty soils precludes faster pore pressure dissipation during stone column installation and therefore hinders densification around the stone columns during installation. It also hinders drainage during earthquakes. This appears to be the primary reason for the lack of effectiveness of stone columns in silty soils. Numerical studies of pore pressure behavior of silty and sandy soils support this view. Based on the experimental results, a numerical model was developed to simulate the stone column installation process. During installation, pore pressure generated due to the vibratory energy imparted into the surrounding ground was estimated, and the ground densification associated with pore pressure dissipation was calculated. Several simulations were done for sands and silty soils with varying initial conditions improved using stone columns with and without wick drains. The model was fine tuned and tested using case studies and field measurements. Design charts and design guidelines that were developed based on the extensive experimental and numerical study are presented. Recommendations for improving the stone column design methodology, and for further research in this subject are presented as well.




Ground Improvement and Reinforced Soil Structures


Book Description

This volume comprises the select proceedings of the Indian Geotechnical Conference (IGC) 2020. The contents focus on recent developments in geotechnical engineering for sustainable tomorrow. The volume covers the topics related advances in ground improvement of weak foundation soils for various civil engineering projects and design/construction of reinforced soil structures with different fill materials using synthetic and natural reinforcements in different forms.







Soil Improvement and Ground Modification Methods


Book Description

Written by an author with more than 25 years of field and academic experience, Soil Improvement and Ground Modification Methods explains ground improvement technologies for converting marginal soil into soil that will support all types of structures. Soil improvement is the alteration of any property of a soil to improve its engineering performance. Some sort of soil improvement must happen on every construction site. This combined with rapid urbanization and the industrial growth presents a huge dilemma to providing a solid structure at a competitive price. The perfect guide for new or practicing engineers, this reference covers projects involving soil stabilization and soil admixtures, including utilization of industrial waste and by-products, commercially available soil admixtures, conventional soil improvement techniques, and state-of-the-art testing methods. - Conventional soil improvement techniques and state-of-the-art testing methods - Methods for mitigating or removing the risk of liquefaction in the event of major vibrations - Structural elements for stabilization of new or existing construction industrial waste/by-products, commercially available soil - Innovative techniques for drainage, filtration, dewatering, stabilization of waste, and contaminant control and removal







Field Trials and Long-Term Monitoring of Microbially-Induced Desaturation for the Treatment of Liquefiable Silty Soils


Book Description

Earthquake liquefaction hazards in silty soils are a critical problem in Portland, Oregon, and other areas around the world. This is a particular problem for existing facilities founded on liquefiable soils, for which there exists no cost-effective liquefaction mitigation solution at the present time. It is essential from both a seismic safety and a seismic resilience perspective to be able to mitigate potentially liquefiable soils underneath existing structures, and to do so in a cost-effective manner. Recent studies suggest that liquefaction mitigation using microbially-induced desaturation (MID) may provide this capability. The objective of MID is to reduce earthquake-induced excess pore water pressure generation compared to saturated soil, and thereby reduce the potential for triggering liquefaction. A field study of liquefaction mitigation using MID was performed at two sites in Portland in the summer of 2019. Low plasticity liquefiable silts were treated with MID by injecting a treatment solution to stimulate native bacteria for a duration of four weeks. Monitoring at both sites indicated that the liquefiable soils were successfully desaturated. The persistence of desaturation was monitored for eight months post-treatment at one site and is ongoing at the other site (20 months so far). The monitoring data indicate that the induced desaturation has persisted through seasonal fluctuations of the ground water table since the end of treatment. These data, which document MID longevity, are particularly important to establish MID as a viable option for liquefaction mitigation for use not only in silty soils, but also underneath existing structures for which there is no other mitigation method available.




Geotechnical Applications for Earthquake Engineering: Research Advancements


Book Description

Disaster preparedness and response management is a burgeoning field of technological research, and staying abreast of the latest developments within the field is a difficult task. Geotechnical Applications for Earthquake Engineering: Research Advancements has collected chapters from experts from around the world in a variety of applications, frameworks, and methodologies, and prepared them in a form that serves as a handy reference and research guide to practitioners and academics alike. By protecting society with earthquake engineering, the latest research can make the world a safer place.




Software and Intelligent Sciences: New Transdisciplinary Findings


Book Description

The junction of software development and engineering combined with the study of intelligence has created a bustling intersection of theory, design, engineering, and conceptual thought.Software and Intelligent Sciences: New Transdisciplinary Findings sits at a crossroads and informs advanced researchers, students, and practitioners on the developments in computer science, theoretical software engineering, cognitive science, cognitive informatics, and intelligence science. The crystallization of accumulated knowledge by the fertilization of these areas, have led to the emergence of a transdisciplinary field known as software and intelligence sciences, to which this book is an important contribution and a resource for both fields alike.