Liquid Chromatography of Synthetic Polymers


Book Description

This book elucidates the peculiar phenomenon of entropy/enthalpy compensation that takes place in high performance liquid chromatography (HPLC) of polymers. Numerous publications, including some books, are devoted to molecular characterization of synthetic polymers, materials presently produced in large and steadily growing quantities, applying methods of HPLC. A knowledge of the molecular characteristics of polymers is indispensable, not only for their proper applications but also for their recycling and remediation. Polymer scientists generally focus on synthesis and potential applications of polymers while not giving due attention to an important central link, their comprehensive characterization in context of development of structure-property correlations. To fill this gap is one of the aims of the present book. The process of entropy/enthalpy compensation plays a decisive role in the advanced method of polymer characterization such as liquid chromatography at critical conditions, eluent gradient interaction chromatography, and temperature gradient interaction chromatography. All chemists working on any aspect of polymer science will find this book a valuable resource for the development of structure-property correlations.




HPLC of Polymers


Book Description

Polymers are mainly characterized by molar mass, chemical composition, functionality and architecture. The determination of the complex structure of polymers by chromatographic and spectroscopic methods is one of the major concerns of polymer analysis and characterization. This lab manual describes the experimental approach to the chromatographic analysis of polymers. Different chromatographic methods, their theoretical background, equipment, experimental procedures and applications are discussed. The book will enable polymer chemists, physicists and material scientists as well as students of macromolecular and analytical science to optimize chromatographic conditions for a specific separation problem. Special emphasis is given to the description of applications for homo- and copolymers and polymer blends.




Advances in Liquid Chromatography


Book Description

This book is a contemporary review of selected subjects in liquid chromatography, especially of the technical development, rather than the applications. The subjects are focused in the biomedical and environmental fields. This is also a troubleshooting record. Complex analytical problems such as sensitivity (sensitive detection by chemiluminescence, coulometric detection, laser based detection, necessity of degassing the system for sensitive detection), difficulty (free radical detection by Electron Spin Resonance, Polarimeter for chiral recognition) and reproducibility (packings for chiral separation and stable bonded silica gels) are solved. Theoretically and environmentally important miniaturizations are described. Individual chapters written by specialists provide information beyond what can be found in general textbooks of liquid chromatography.




MALDI-TOF Mass Spectrometry of Synthetic Polymers


Book Description

MALDI-TOF mass spectrometry is one of the latest and most fascinating new developments in the analysis of organic compounds. Originally developed for the analysis of biomolecules, it has developed into one of the most powerful techniques for the characterization of synthetic polymers. This book describes the fundamentals of the MALDI process and the technical features of MALDI-TOF instrumentation. It reviews the application of MALDI-TOF for identification, chemical and molar mass analysis of synthetic polymers. With many examples, the monograph examines experimental protocols for the determination of endgroups, the analysis of copolymers and additives, and the coupling of liquid chromatography and MALDI-TOF in detail.




Molecular Characterization of Polymers


Book Description

Molecular Characterization of Polymers presents a range of advanced and cutting-edge methods for the characterization of polymers at the molecular level, guiding the reader through theory, fundamentals, instrumentation, and applications, and supporting the end goal of efficient material selection and improved material performance. Each chapter focuses on a specific technique or family of techniques, including the different areas of chromatography, field flow fractionation, long chain branching, static and dynamic light scattering, mass spectrometry, NMR, X-Ray and neutron scattering, polymer dilute solution viscometry, microscopy, and vibrational spectroscopy. In each case, in-depth coverage explains how to successfully implement and utilize the technique. This practical resource is highly valuable to researchers and advanced students in polymer science, materials science, and engineering, and to those from other disciplines and industries who are unfamiliar with polymer characterization techniques. - Introduces a range of advanced characterization methods, covering aspects such as molecular weight, polydispersity, branching, composition, and tacticity - Enables the reader to understand and to compare the available technique, and implement the selected technique(s), with a view to improving properties of the polymeric material - Establishes a strong link between basic principles, characterization techniques, and real-life applications




Introduction to Modern Liquid Chromatography


Book Description

The latest edition of the authoritative reference to HPLC High-performance liquid chromatography (HPLC) is today the leading technique for chemical analysis and related applications, with an ability to separate, analyze, and/or purify virtually any sample. Snyder and Kirkland's Introduction to Modern Liquid Chromatography has long represented the premier reference to HPLC. This Third Edition, with John Dolan as added coauthor, addresses important improvements in columns and equipment, as well as major advances in our understanding of HPLC separation, our ability to solve problems that were troublesome in the past, and the application of HPLC for new kinds of samples. This carefully considered Third Edition maintains the strengths of the previous edition while significantly modifying its organization in light of recent research and experience. The text begins by introducing the reader to HPLC, its use in relation to other modern separation techniques, and its history, then leads into such specific topics as: The basis of HPLC separation and the general effects of different experimental conditions Equipment and detection The column—the "heart" of the HPLC system Reversed-phase separation, normal-phase chromatography, gradient elution, two-dimensional separation, and other techniques Computer simulation, qualitative and quantitative analysis, and method validation and quality control The separation of large molecules, including both biological and synthetic polymers Chiral separations, preparative separations, and sample preparation Systematic development of HPLC separations—new to this edition Troubleshooting tricks, techniques, and case studies for both equipment and chromatograms Designed to fulfill the needs of the full range of HPLC users, from novices to experts, Introduction to Modern Liquid Chromatography, Third Edition offers the most up-to-date, comprehensive, and accessible survey of HPLC methods and applications available.




Monolithic Materials


Book Description

During the past decade, monolithic materials in the shape of discs, stacked layers, rolled sheets, sponges, irregular chunks, tubes, and cylinders have all been successfully demonstrated. These formats were prepared from a wide variety of materials including natural polymers such as cellulose, synthetic polymers that involved porous styrene-, methacrylate-, and acrylamide-based polymers, and inorganic materials, mainly silica. Each approach is interesting from the point of view of both preparation and application.Although the current papers and patents concerned with monolithic separation media are quite numerous, the information is scattered throughout a vast number of journals. This book therefore fills the gap in the market for a comprehensive reference book on this subject.Monolithic materials concerns all of the current formats of monolithic materials and provides an integrated view of this novel format of separation media. Since the flow pattern in monolithic devices is different from that in packed beds, the hydrodynamics of the system and mass transport differ considerably from those derived for packed columns. Therefore, this book presents contributions concerned with both flow and mass transfer in the monolithic materials. A significant proportion of the book is devoted to the applications of monolithic materials. It also provides the reader with valuable information about the sources of the specific materials, their properties, and potential applications.·Monolithic materials are currently very popular within several scientific areas such as chromatography, optics, catalysis, diagnostics, genomics, proteomics, and microfluidics.·Provides valuable information about the sources of the specific materials, their properties, and potential applications.·Chapters written by leading experts in the area.




Charged Aerosol Detection for Liquid Chromatography and Related Separation Techniques


Book Description

The first book devoted exclusively to a highly popular, relatively new detection technique Charged Aerosol Detection for Liquid Chromatography and Related Separation Techniques presents a comprehensive review of CAD theory, describes its advantages and limitations, and offers extremely well-informed recommendations for its practical use. Using numerous real-world examples based on contributors’ professional experiences, it provides priceless insights into the actual and potential applications of CAD across a wide range of industries. Charged aerosol detection can be combined with a variety of separation techniques and in numerous configurations. While it has been widely adapted for an array of industrial and research applications with great success, it is still a relatively new technique, and its fundamental performance characteristics are not yet fully understood. This book is intended as a tool for scientists seeking to identify the most effective and efficient uses of charged aerosol detection for a given application. Moving naturally from basic to advanced topics, the author relates fundamental principles, practical uses, and applications across a range of industrial settings, including pharmaceuticals, petrochemicals, biotech, and more. Offers timely, authoritative coverage of the theory, experimental techniques, and end-user applications of charged aerosol detection Includes contributions from experts from various fields of applications who explore CAD’s advantages over traditional HPLC techniques, as well its limitations Provides a current theoretical and practical understanding of CAD, derived from authorities on aerosol technology and separation sciences Features numerous real-world examples that help relate fundamental properties and general operational variables of CAD to its performance in a variety of conditions Charged Aerosol Detection for Liquid Chromatography and Related Separation Techniques is a valuable resource for scientists who use chromatographic techniques in academic research and across an array of industrial settings, including the biopharmaceutical, biotechnology, biofuel, chemical, environmental, and food and beverage industries, among others.




Modern Size-Exclusion Liquid Chromatography


Book Description

The Second Edition of Modern Size-Exclusion Chromatography offers a complete guide to the theories, methods, and applications of size-exclusion chromatography. It provides an unparalleled, integrated, up-to-date treatment of gel permeation and gel filtration chromatography. With its detailed descriptions of techniques, data handling, compilations of information on columns and column packings, and tables of important solvents and reference materials, the book offers readers everything they need to take full advantage of this popular macromolecular characterization technique. Since publication of the first edition in 1979, there have been many important advances in the field of size-exclusion chromatography. This Second Edition brings the book thoroughly up to date, with expert coverage of: New and emerging industrial and research applications Practical aspects of size-exclusion chromatography (SEC) and multidetector and multidimensional SEC technologies for polymer architecture and copolymer analysis Updated information on the latest equipment and techniques New best practices for the lab SEC in relation to polymer characterization techniques such as GPEC, LCCC, and rheology Throughout the text, detailed examples guide you step by step through all the latest techniques and applications. With its extensive revisions and updates written by leading experts and pioneers in the field, Modern Size-Exclusion Liquid Chromatography remains the definitive resource for the broad range of researchers and scientists who use HPLC and GPC methods.




Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation


Book Description

A comprehensive, practical approach to three powerful methods of polymer analysis and characterization This book serves as a complete compendium of three important methods widely used for the characterization of synthetic and natural polymers—light scattering, size exclusion chromatography (SEC), and asymmetric flow field flow fractionation (A4F). Featuring numerous up-to-date examples of experimental results obtained by light scattering, SEC, and A4F measurements, Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation takes an all-in-one approach to deliver a complete and thorough explanation of the principles, theories, and instrumentation needed to characterize polymers from the viewpoint of their molar mass distribution, size, branching, and aggregation. This comprehensive resource: Is the only book gathering light scattering, size exclusion chromatography, and asymmetric flow field flow fractionation into a single text Systematically compares results of size exclusion chromatography with results of asymmetric flow field flow fractionation, and how these two methods complement each other Provides in-depth guidelines for reproducible and correct determination of molar mass and molecular size of polymers using SEC or A4F coupled with a multi-angle light scattering detector Offers a detailed overview of the methodology, detection, and characterization of polymer branching Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation should be of great interest to all those engaged in the polymer analysis and characterization in industrial and university research, as well as in manufacturing quality control laboratories. Both beginners and experienced can confidently rely on this volume to confirm their own understanding or to help interpret their results.