Fundamentals of Liquid Crystal Devices


Book Description

Liquid Crystal Devices are crucial and ubiquitous components of an ever-increasing number of technologies. They are used in everything from cellular phones, eBook readers, GPS devices, computer monitors and automotive displays to projectors and TVs, to name but a few. This second edition continues to serve as an introductory guide to the fundamental properties of liquid crystals and their technical application, while explicating the recent advancements within LCD technology. This edition includes important new chapters on blue-phase display technology, advancements in LCD research significantly contributed to by the authors themselves. This title is of particular interest to engineers and researchers involved in display technology and graduate students involved in display technology research. Key features: Updated throughout to reflect the latest technical state-of-the-art in LCD research and development, including new chapters and material on topics such as the properties of blue-phase liquid crystal displays and 3D liquid crystal displays; Explains the link between the fundamental scientific principles behind liquid crystal technology and their application to photonic devices and displays, providing a thorough understanding of the physics, optics, electro-optics and material aspects of Liquid Crystal Devices; Revised material reflecting developments in LCD technology, including updates on optical modelling methods, transmissive LCDs and tunable liquid crystal photonic devices; Chapters conclude with detailed homework problems to further cement an understanding of the topic.




Introduction to Liquid Crystals for Optical Design and Engineering


Book Description

Devices based on liquid crystals have become the mainstay of display technology used in mobile devices, vehicles, computer systems, and almost any other opportunity for information display imaginable. The aim of this book is to provide the optics community a liquid crystals primer that focuses on the optical components made from these fascinating materials. The book provides a functional overview of liquid crystal devices, their history, and their applications so that readers are prepared for more advanced texts and can continue to grow their abilities in this field. While it is not meant to be a complete mathematical treatise on the basics and applications of liquid crystals, the book does fill in some of the technical gaps, in particular in the area of adaptive optics applications.




Structure and Properties of Liquid Crystals


Book Description

This book by Lev M. Blinov is ideal to guide researchers from their very first encounter with liquid crystals to the level where they can perform independent experiments on liquid crystals with a thorough understanding of their behaviour also in relation to the theoretical framework. Liquid crystals can be found everywhere around us. They are used in virtually every display device, whether it is for domestic appliances of for specialized technological instruments. Their finely tunable optical properties make them suitable also for thermo-sensing and laser technologies. There are many monographs written by prominent scholars on the subject of liquid crystals. The majority of them presents the subject in great depth, sometimes focusing on a particular research aspect, and in general they require a significant level of prior knowledge. In contrast, this books aims at an audience of advanced undergraduate and graduate students in physics, chemistry and materials science. The book consists of three parts: the first part, on structure, starts from the fundamental principles underlying the structure of liquid crystals, their rich phase behaviour and the methods used to study them; the second part, on physical properties, emphasizes the influence of anisotropy on all aspects of liquid crystals behaviour; the third, focuses on electro-optics, the most important properties from the applications standpoint. This part covers only the main effects and illustrates the underlying principles in greater detail. Professor Lev M. Blinov has had a long carrier as an experimentalist. He made major contributions in the field of ferroelectric mesophases. In 1985 he received the USSR state prize for investigations of electro-optical effects in liquid crystals for spatial light modulators. In 1999 he was awarded the Frederiks medal of the Soviet Liquid Crystal Society and in 2000 he was honoured with the G. Gray silver medal of the British Liquid Crystal Society. He has held many visiting academic positions in universities and laboratories across Europe and in Japan.




Optics and Nonlinear Optics of Liquid Crystals


Book Description

This is a monograph/text devoted to a detailed treatment of the optical, electro-optical and nonlinear optical properties of all the mesophases of liquid crystals and related processes, phenomena and application principles. Quantitative data on material and optical parameters spanning the ultraviolet, visible, infrared as well as the microwave regimes are presented along with detailed theoretical treatments of basic liquid crystal physics, material properties and nonlinear optics.Starting with a discussion on the basic building blocks of liquid crystalline molecules, the authors proceed to present in a pedagogical manner current theories, experiments, and applications of these unique and important optical properties of liquid crystals. Numerous tables of hard-to-find liquid crystalline parameters, a self-contained chapter on general nonlinear optics, and comprehensive literature review are also included.




Liquid Crystal Devices


Book Description

Select more accurate liquid crystal (LC) mixtures for various applications and design better performing liquid crystal devices (LCD)s in less time with this practical resource that provides an expert account of the fundamental physics of LCs and its practical application to device design. Liquid Crystal Devices: Physics and Applications provides engineers, physicists, and device designers with the most up-to-date descriptions of the dielectric, optical, and viscoelastic properties of LCs, including their relation to molecular structure, mixture content, and material characteristics




Optical Guided Waves and Devices


Book Description

Presents an introduction to the field of optical guided waves and devices for optoelectronic engineers, optical communication engineers and physicists. This text incorporates the topic of integrated optics and provides a balance between theoretical foundations and practical applications.




Liquid Crystal Optical Device


Book Description

The Special Issue “Liquid Crystal Optical Devices” discusses recent developments in the rapidly advancing subject of liquid crystals (LCs). The book is composed of several contributions from researchers in the field of liquid crystals that deal with the broadly with aspects of optical devices ranging from a theoretical viewpoints to practical implications of the properties of LCs. This is the first Special Issue devoted solely to recent advances in the rapidly expanding subject of LCs, a unique class of substances that combines both ordered structures with quasi-liquid-like properties. This Special Issue offers a broad perspective of the present state of the art in design and an up-to-date account of the most recent advances and progress in the field of LCs, providing thorough coverage of the demonstrated optical devices and the comprehensive analysis needed by professionals and engineers in the field of LC. The material is carefully structured, providing readers with a solid foundation of the principles, capabilities, use, and limitations of LC optical devices. In addition, this book covers the principles, recent advances and future developments of liquid crystal beam steering devices as well as recent advances in adaptive liquid crystal lenses.




Optics of Liquid Crystal Displays


Book Description

NOW UPDATED—THE HIGHLY PRACTICAL GUIDE TO ANALYZING LIQUID CRYSTAL DISPLAYS The subject of liquid crystal displays has vigorously evolved into an exciting interdisciplinary field of research and development, involving optics, materials, and electronics. Updated to reflect recent advances, the Second Edition of Optics of Liquid Crystal Displays now offers a broader, more comprehensive discussion on the fundamentals of display systems and teaches readers how to analyze and design new components and subsystems for LCDs. New features of this edition include: Discussion of the dynamics of molecular reorientation Expanded information of the method of Poincaré sphere in various optical components, including achromatic wave plates and compensators Neutral and negative Biaxial thin films for compensators Circular polarizers and anti-reflection coatings The introduction of wide field-of-view wave plates and filters Comprehensive coverage of VA-LCD and IPS-LCD Additional numerical examples This updated edition is intended as a textbook for students in electrical engineering and applied physics, as well as a reference book for engineers and scientists working in the area of research and development of display technologies.




Physical Properties of Liquid Crystals


Book Description

This handbook is a unique compendium of knowledge on all aspects of the physics of liquid crystals. In over 500 pages it provides detailed information on the physical properties of liquid crystals as well as the recent theories and results on phase transitions, defects and textures of different types of liquid crystals. An in-depth understanding of the physical fundamentals is a prerequisite for everyone working in the field of liquid crystal research. With this book the experts as well as graduate students entering the field get all the information they need.




Polarized Light in Liquid Crystals and Polymers


Book Description

Polarized Light in Liquid Crystals and Polymers deals with the linear optics of birefringent materials, such as liquid crystals and polymers, and surveys light propagation in such media with special attention to applications. It is unique in treating light propagation in micro- and nanostructured birefringent optical elements, such as lenses and gratings composed of birefringent materials, as well as the spatial varying anisotropic structures often found in miniaturized liquid crystal devices.