Polymer-modified Liquid Crystals


Book Description

Describing all aspects of polymer-dispersed and polymer-stabilized liquid crystals, this book is a must-have resource for practitioners in the area.




Photoalignment of Liquid Crystalline Materials


Book Description

Photoalignment possesses significant advantages in comparison with the usual ‘rubbing’ treatment of the substrates of liquid crystal display (LCD) cells as it is a non-contact method with a high resolution. A new technique recently pioneered by the authors of this book, namely the photo-induced diffusion reorientation of azodyes, does not involve any photochemical or structural transformations of the molecules. This results in photoaligning films which are robust and possess good aligning properties making them particularly suitable for the new generation of liquid crystal devices. Photoalignment of Liquid Crystalline Materials covers state-of-the-art techniques and key applications, as well as the authors’ own diffusion model for photoalignment. The book aims to stimulate new research and development in the field of liquid crystalline photoalignment and in so doing, enable the technology to be used in large scale LCD production. Key features: Provides a full examination of the mechanisms of photoalignment. Examines the properties of liquid crystals during photoalignment, with particular reference made to the effect on their chemical structure and stability. Considers the most useful photosensitive materials and preparation procedures suitable for liquid crystalline photoalignment. Presents several methods for photoalignment of liquid crystals. Compares various applications of photoalignment technology for in-cell patterned polarizers and phase retarders, transflective and micro displays, security and other liquid crystal devices. Through its interdisciplinary approach, this book is aimed at a wide range of practising electrical engineers, optical engineers, display technologists, materials scientists, physicists and chemists working on the development of liquid crystal devices. It will also appeal to researchers and graduate students taking courses on liquid crystals or display technologies. The Society for Information Display (SID) is an international society which has the aim of encouraging the development of all aspects of the field of information display. complementary to the aims of the society the Wiley-SID series is intended to explain the latest developments in information display technology at a professional level. The broad scope of the series addresses all facets of information displays from technical aspects through systems and prototypes to standards and ergonomics.




Polarized Light in Liquid Crystals and Polymers


Book Description

Polarized Light in Liquid Crystals and Polymers deals with the linear optics of birefringent materials, such as liquid crystals and polymers, and surveys light propagation in such media with special attention to applications. It is unique in treating light propagation in micro- and nanostructured birefringent optical elements, such as lenses and gratings composed of birefringent materials, as well as the spatial varying anisotropic structures often found in miniaturized liquid crystal devices.




Electrooptic Effects in Liquid Crystal Materials


Book Description

Electrooptic effects provide the basis for much liquid-crystal display technology. This book, by two of the leaders in liquid-crystal research in Russia, presents a complete and accessible treatment of virtually all known phenomena occurring in liquid crystals under the influence of electric fields.




Liquid Crystals


Book Description

The fundamental science and latest applications of liquid crystal technologies An excellent professional reference and superior upper-level student text, Liquid Crystals, Second Edition is a comprehensive treatment of all the basic principles underlying the unique physical and optical properties of liquid crystals. Written by an internationally known pioneer in the nonlinear optics of liquid crystals, the book also provides a unique, in-depth discussion of the mechanisms and theoretical principles behind all major nonlinear optical phenomena occurring in liquid crystals. Fully revised and updated with the latest developments, this Second Edition covers: Basic physics and optical properties of liquid crystals Nematics, as well as other mesophases such as smectics, ferroelectrics, and cholesterics Fundamentals of liquid crystals for electro-optics, and display and non-display related applications Various theoretical and computational techniques used in describing optical propagation through liquid crystals and anisotropic materials Nonlinear optics of liquid crystals, including updated literature reviews and fundamental discussions Structured to follow a natural sequence of instruction, from basic physics to the latest specialized optical, electro-optical, and nonlinear applications, Liquid Crystals is a textbook that grounds students in the fundamentals before introducing them to the most current discoveries in the field. Written in a clear, reader-friendly style, it features numerous figures, tables, and illustrations, including important and hard-to-find device and material parameters. Invaluable to students, researchers, and those working with liquid crystal applications in various industries, Liquid Crystals, Second Edition is the most comprehensive and up-to-date resource available.




The Physics of Liquid Crystals


Book Description

This new edition of the classic text incorporates the many advances in knowledge about liquid crystals that have taken place since its initial publication in 1974. Entirely new chapters describe the types and properties of liquid crystals in terms of both recently discovered phases and current insight into the nature of local order and isotropic-to-nematic transition. There is an extensive discussion of the symmetrical, macroscopic, dynamic, and defective properties of smectics and columnar phases, with emphasis on order-of-magnitude considerations, all illustrated with numerous descriptions of experimental arrangements. The final chapter is devoted to phase transitions in smectics, including the celebrated analogy between smectic A and superconductors. This new version's topicality and breadth of coverage will ensure that it remains an indispensable guide for researchers and graduate students in mechanics and engineering, and in chemical, solid state, and statistical physics.




Liquid Crystals


Book Description

Fluorinated Liquid Crystals: Design of Soft Nanostructures and Increased Complexity of Self-Assembly by Perfluorinated Segments, by Carsten Tschierske Liquid Crystalline Crown Ethers, by Martin Kaller and Sabine Laschat Star-Shaped Mesogens – Hekates: The Most Basic Star Structure with Three Branches, by Matthias Lehmann DNA-Based Soft Phases, by Tommaso Bellini, Roberto Cerbino and Giuliano Zanchetta Polar and Apolar Columnar Phases Made of Bent-Core Mesogens, by N. Vaupotič, D. Pociecha and E. Gorecka Spontaneous Achiral Symmetry Breaking in Liquid Crystalline Phases, by H. Takezoe Nanoparticles in Liquid Crystals and Liquid Crystalline Nanoparticles, by Oana Stamatoiu, Javad Mirzaei, Xiang Feng and Torsten Hegmann Stimuli-Responsive Photoluminescent Liquid Crystals, by Shogo Yamane, Kana Tanabe, Yoshimitsu Sagara and Takashi Kato




Liquid Crystalline Semiconductors


Book Description

This is an exciting stage in the development of organic electronics. It is no longer an area of purely academic interest as increasingly real applications are being developed, some of which are beginning to come on-stream. Areas that have already been commercially developed or which are under intensive development include organic light emitting diodes (for flat panel displays and solid state lighting), organic photovoltaic cells, organic thin film transistors (for smart tags and flat panel displays) and sensors. Within the family of organic electronic materials, liquid crystals are relative newcomers. The first electronically conducting liquid crystals were reported in 1988 but already a substantial literature has developed. The advantage of liquid crystalline semiconductors is that they have the easy processability of amorphous and polymeric semiconductors but they usually have higher charge carrier mobilities. Their mobilities do not reach the levels seen in crystalline organics but they circumvent all of the difficult issues of controlling crystal growth and morphology. Liquid crystals self-organise, they can be aligned by fields and surface forces and, because of their fluid nature, defects in liquid crystal structures readily self-heal. With these matters in mind this is an opportune moment to bring together a volume on the subject of ‘Liquid Crystalline Semiconductors’. The field is already too large to cover in a comprehensive manner so the aim has been to bring together contributions from leading researchers which cover the main areas of the chemistry (synthesis and structure/function relationships), physics (charge transport mechanisms and optical properties) and potential applications in photovoltaics, organic light emitting diodes (OLEDs) and organic field-effect transistors (OFETs). This book will provide a useful introduction to the field for those in both industry and academia and it is hoped that it will help to stimulate future developments.




Textures of Liquid Crystals


Book Description

A unique compendium of knowledge on all aspects of the texture of liquid crystals, providing not just detailed information on texture formation and determination, but also an in-depth discussion of different characterization methods. Experts as well as graduates entering the field will find all the information they need in this handbook, while the magnitude of the color images make it valuable hands-on-reference.




Crystals That Flow


Book Description

The collection is divided into sections, each of which is prefaced by a brief commentary referring to the historic-scientific context of the time.