Liquid Metal Alloys in Electronics


Book Description

Liquid metal alloys are of rapidly increasing interest in electronics because they combine the high electrical conductivity of metals with the ease of manipulation and reconfiguration of liquids. The book focuses on such issues as self-assembled monolayers, energy-harvesting, reconfigurable and flexible antennae, sensors, conformable electronics, the creation of non-wetting super-hydrophobic or super-lyophobic surfaces, vacuum-assisted infiltration techniques, development of microfluidics, deformable electrodes and wearable electronics. The book references 270 original resources and includes their direct web link for in-depth reading. Keywords: Liquid Metals, Gallium-Indium Alloys, Galinstan, EGaIn, Self-Assembled Monolayers, Energy-Harvesting, Reconfigurable Antennae, Sensors, Conformable Electrodes, Stretchable Wires and Interconnects, Self-Healing Circuits, Gallium-Lyophilic Surfaces, Wettability of Liquid Metal, Substrate Topology, Selective Wetting Deposition Technique, Gallium-Indium Droplets on Thin Metal Films, Substrate Texture upon Wetting, Dielectrophoresis, Microfluidics, Deformable Electrodes, Wearable Electronics, Flexible Antennae, Surface Oxidation of Alloys.




Functional Organic Liquids


Book Description

The first book to comprehensively cover the burgeoning new class of soft materials known as functional organic liquids Functional organic liquids, a new concept in soft matter materials science, exhibit favorable properties compared to amorphous polymers and ionic liquids. They are composed of a functional core unit and a side chain, which induces fluidity even at room temperature. Due to their fluidity, functional organic liquids can adopt any shape and geometry and fulfill their function in stretchable and bendable devices for applications in photovoltaics, organic electronics, biomedicine, and biochemistry. Presented in five parts, this book starts with an overview of the design methods and properties of functional organic liquids. The next three parts focus on the applications of this exciting new class of soft materials in the fields of energy conversion, nanotechnology, and biomaterials. They study the liquids for energy conversion, those containing inorganic nanoclusters, and solvent-free soft biomaterials. Functional Organic Liquids concludes with a comparison in terms of properties and application potential between functional organic liquids and more conventional soft matter such as ionic liquids and liquid metals. -Examines the current state of science and technology for functional organic liquids -Focuses on potential and already realized applications such as functional organic liquids for energy conversion -Stimulates researchers to move forward on future development and applications Functional Organic Liquids is an excellent book for materials scientists, polymer chemists, organic chemists, physical chemists, surface chemists, and surface physicists.




Methods for Phase Diagram Determination


Book Description

Phase diagrams are "maps" materials scientists often use to design new materials. They define what compounds and solutions are formed and their respective compositions and amounts when several elements are mixed together under a certain temperature and pressure. This monograph is the most comprehensive reference book on experimental methods for phase diagram determination. It covers a wide range of methods that have been used to determine phase diagrams of metals, ceramics, slags, and hydrides.* Extensive discussion on methodologies of experimental measurements and data assessments * Written by experts around the world, covering both traditional and combinatorial methodologies* A must-read for experimental measurements of phase diagrams




From Hamiltonians to Phase Diagrams


Book Description

The development of the modern theory of metals and alloys has coincided with great advances in quantum-mechanical many-body theory, in electronic structure calculations, in theories of lattice dynamics and of the configura tional thermodynamics of crystals, in liquid-state theory, and in the theory of phase transformations. For a long time all these different fields expanded quite independently, but now their overlap has become sufficiently large that they are beginning to form the basis of a comprehensive first-principles the ory of the cohesive, structural, and thermodynamical properties of metals and alloys in the crystalline as well as in the liquid state. Today, we can set out from the quantum-mechanical many-body Hamiltonian of the system of electrons and ions, and, following the path laid out by generations of the oreticians, we can progress far enough to calculate a pressure-temperature phase diagram of a metal or a composition-temperature phase diagram of a binary alloy by methods which are essentially rigorous and from first prin ciples. This book was written with the intention of confronting the materials scientist, the metallurgist, the physical chemist, but also the experimen tal and theoretical condensed-matter physicist, with this new and exciting possibility. Of course there are limitations to such a vast undertaking as this. The selection of the theories and techniques to be discussed, as well as the way in which they are presented, are necessarily biased by personal inclination and personal expertise.




Chemistry of Aluminium, Gallium, Indium and Thallium


Book Description

Boron has all the best tunes. That may well be the first impression of the Group 13 elements. The chemical literature fosters the impression not only in the primary journals, but also in asteady outflowofbooks focussing more or less closely on boron and its compounds. The same preoccupation with boron is apparent in the coverage received by the Group 13 elements in the comprehensive and regularly updated volume of the Gmelin Handbook. Yet such an imbalance cannot be explained by any inherent lack ofvariety, interest or consequence in the 'heavier elements. Aluminium is the most abundant metal in the earth's crust; in the industrialised world the metal is second only to iron in its usage, and its compounds can justifiably be said to touch our lives daily - to the potential detriment of those and other lives, some would argue. From being chemical curios, gallium and indium have now gained considerably prominence as sources of compound semiconductors like gallium arsenide and indium antimonide. Nor is there any want ofincident in the chemistriesofthe heavier Group 13 elements. In their redox, coordination and structural properties, there is to be found music indeed, notable not always for its harmony but invariably for its richness and variety. Thisbook seeks to redress the balance with a definitive, wide-rangingand up-to-date review of the chemistry of the Group 13 metals aluminium, gallium, indium and thallium.




Liquid-metals Handbook


Book Description




Rapidly Quenched Metals


Book Description

Rapidly Quenched Metals, Volume I covers the proceedings of the Fifth International Conference on Rapidly Quenched Metals, held in Wurzburg, Germany on September 3-7, 1984. The book focuses on amorphous and crystalline metals formed by rapid quenching from the melt. The selection first covers the scope and trends of developments in rapid solidification technology, rapid solidification, and undercooling of liquid metals by rapid quenching. Discussions focus on experimental method, powders, strip, particulate production, consolidation, and alloys and alloy systems. The text then examines the solidification of undercooled liquid alloys entrapped in solid; crystallization kinetics in undercooled droplets; and grain refinement in bulk undercooled alloys. The manuscript tackles the undercooling of niobium-germanium alloys in a 100 meter drop tube; influence of process parameters on the cooling rate of the meltspinning process; and the mechanism of ribbon formation in melt-spun copper and copper-zirconium. The formation and structure of thick sections of rapidly-solidified material by incremental deposition and production of ultrafine dispersions of rare earth oxides in Ti alloys using rapid solidification are also mentioned. The selection is a valuable reference for physicists, chemists, physical metallurgists, and engineers.




Artificial Organ Engineering


Book Description

Artificial organs may be considered as small-scale process plants, in which heat, mass and momentum transfer operations and, possibly, chemical transformations are carried out. This book proposes a novel analysis of artificial organs based on the typical bottom-up approach used in process engineering. Starting from a description of the fundamental physico-chemical phenomena involved in the process, the whole system is rebuilt as an interconnected ensemble of elemental unit operations. Each artificial organ is presented with a short introduction provided by expert clinicians. Devices commonly used in clinical practice are reviewed and their performance is assessed and compared by using a mathematical model based approach. Whilst mathematical modelling is a fundamental tool for quantitative descriptions of clinical devices, models are kept simple to remain focused on the essential features of each process. Postgraduate students and researchers in the field of chemical and biomedical engineering will find that this book provides a novel and useful tool for the analysis of existing devices and, possibly, the design of new ones. This approach will also be useful for medical researchers who want to get a deeper insight into the basic working principles of artificial organs.




Liquid Metal Biomaterials


Book Description

This is the first-ever book to illustrate the principles and applications of liquid metal biomaterials. Room-temperature liquid metal materials are rapidly emerging as next-generation functional materials that display many unconventional properties superior to those of conventional biomaterials. Their outstanding, unique versatility ("one material, diverse capabilities") opens many exciting opportunities for the medical sciences. The book reviews representative applications of liquid metal biomaterials from both therapeutic and diagnostic aspects. It also discusses related efforts to employ liquid metals to overcome today's biomedical challenges. It will provide readers with a comprehensive understanding of the technical advances and fundamental discoveries on the frontier, and thus equip them to investigate and utilize liquid metal biomaterials to tackle various critical problems.




Introduction to the Electron Theory of Metals


Book Description

Electron theory of metals textbook for advanced undergraduate students of condensed-matter physics and related disciplines.