Liquid Metals


Book Description

An up-to-date exploration of the properties and most recent applications of liquid metals In Liquid Metal: Properties, Mechanisms, and Applications, a pair of distinguished researchers delivers a comprehensive exploration of liquid metals with a strong focus on their structure and physicochemical properties, preparation methods, and tuning strategies. The book also illustrates the applications of liquid metals in fields as varied as mediated synthesis, 3D printing, flexible electronics, biomedicine, energy storage, and energy conversion. The authors include coverage of reactive mediums for synthesizing and assembling nanomaterials and direct-writing electronics, and the book offers access to supplementary video materials to highlight the concepts discussed within. Recent advancements in the field of liquid metals are also discussed, as are new opportunities for research and development in this rapidly developing area. The book also includes: A thorough introduction to the fundamentals of liquid metal, including a history of its discovery, its structure and physical properties, and its preparation Comprehensive explorations of the external field tuning of liquid metal, including electrical, magnetic, and chemical tuning Practical discussions of liquid metal as a new reaction medium, including nanomaterial synthesis and alloy preparation In-depth examinations of constructing techniques of liquid metal-based architectures, including injection, imprinting, and mask-assisted depositing Perfect for materials scientists, electrochemists, and catalytic chemists, Liquid Metal: Properties, Mechanisms, and Applications also belongs in the libraries of inorganic chemists, electronics engineers, and biochemists.




Liquid-metals Handbook


Book Description




Materials for Space-power Liquid Metals Service


Book Description

This memorandum deals with the use of liquid metals in advanced spacepower plants. The principal liquid-metal candidates for such applications are mercury, NaK, potassium, lithium, cesium, and sodium. These metals are used primarily as heat-transfer media and as working fluids at high temperatures. This memorandum identifies specific areas for molten metal use and discusses the materials, problems, and developments associated with their containment. (Author).




Liquid Metal Processing


Book Description

The title presents an up-to-date account of the research, development, and applications of metallic alloys, recent research into the structure of charge materials, melt treatment, and casting technologies, and their influence on the properties of melts and ingots. This research has confirmed theoretical concepts about the microheterogenous constitution of metallic melts and has made it possible to manage the quality of castings and ingots of various alloys by their special treatment in the liquid state. The four chapters of the book give theoretical and experimental evidence of the effect of the melt constitution on the structure and properties of the solid metal. Liquid Metal Processing: Applications to Aluminium Alloy Production considers common features of structure formation in aluminium alloys for a wide range of solidification conditions, including ultrasonic and thermal melt treatments and discusses the technological problems of these treatments.




Material Behavior and Physical Chemistry in Liquid Metal Systems


Book Description

The international seminar "Material Behavior and Physical Chemistry in Liquid Metal Systems" was organized by the Institute of Materials and Solid State Research of the Karlsruhe Nuclear Research Center (Karlsruhe, Federal Republic of Germany). The seminar was held at the Nuclear Engineering School of the center on March 24-26, 1981. The aim of the seminar was to give metallurgists, chemists,. and physicists working in different areas of the science and technology of liquid metals an opportunity to discuss the basic work and the need for further work in this field. Since the seminar was held near one of the laboratories which for the last few years has been engaged in liquid alkali metal studies, partic ipants also had an opportunity to observe modern equipment for liquid alkali metal research. Interest in the application of liquid metals as working fluids in energy production, conversion, and storage is increasing. The technology has already demonstrated its high standards, which make possible the operation of large sodium-cooled fast reactors. Past conferences have shown, however, that there is still a lack of basic knowledge and understanding. Therefore, the aim of the present seminar was to discuss basic work in detail, and most of the papers contributed to this objective.




Functional Organic Liquids


Book Description

The first book to comprehensively cover the burgeoning new class of soft materials known as functional organic liquids Functional organic liquids, a new concept in soft matter materials science, exhibit favorable properties compared to amorphous polymers and ionic liquids. They are composed of a functional core unit and a side chain, which induces fluidity even at room temperature. Due to their fluidity, functional organic liquids can adopt any shape and geometry and fulfill their function in stretchable and bendable devices for applications in photovoltaics, organic electronics, biomedicine, and biochemistry. Presented in five parts, this book starts with an overview of the design methods and properties of functional organic liquids. The next three parts focus on the applications of this exciting new class of soft materials in the fields of energy conversion, nanotechnology, and biomaterials. They study the liquids for energy conversion, those containing inorganic nanoclusters, and solvent-free soft biomaterials. Functional Organic Liquids concludes with a comparison in terms of properties and application potential between functional organic liquids and more conventional soft matter such as ionic liquids and liquid metals. -Examines the current state of science and technology for functional organic liquids -Focuses on potential and already realized applications such as functional organic liquids for energy conversion -Stimulates researchers to move forward on future development and applications Functional Organic Liquids is an excellent book for materials scientists, polymer chemists, organic chemists, physical chemists, surface chemists, and surface physicists.




The Physical Properties of Liquid Metals


Book Description

This book provides the first comprehensive critical survey of the microstructural characteristics of liquid metals which determine properties of viscosity, surface tension, density, heat capacity, thermal conductivity, electrical resistivity, diffusion, and velocity of sound transmission. The experimental techniques used to obtain these data are also reviewed. The result is a valuable set of correlations and reference data which enable the reader to understand the basic phenomena underlying the properties of liquid metals. As such, the book will be invaluable for metallurgists and materials engineers working in this area.




Liquid Metal Processing


Book Description

The monograph is intended for scientists and engineers in industry, as well as for advanced students in metallurgy, foundry industry and metallography, and it will be of particular interest to those involved in research into the interrelation between the liquid and solid states of many commercially important light alloys.




Chemistry of Aluminium, Gallium, Indium and Thallium


Book Description

Boron has all the best tunes. That may well be the first impression of the Group 13 elements. The chemical literature fosters the impression not only in the primary journals, but also in asteady outflowofbooks focussing more or less closely on boron and its compounds. The same preoccupation with boron is apparent in the coverage received by the Group 13 elements in the comprehensive and regularly updated volume of the Gmelin Handbook. Yet such an imbalance cannot be explained by any inherent lack ofvariety, interest or consequence in the 'heavier elements. Aluminium is the most abundant metal in the earth's crust; in the industrialised world the metal is second only to iron in its usage, and its compounds can justifiably be said to touch our lives daily - to the potential detriment of those and other lives, some would argue. From being chemical curios, gallium and indium have now gained considerably prominence as sources of compound semiconductors like gallium arsenide and indium antimonide. Nor is there any want ofincident in the chemistriesofthe heavier Group 13 elements. In their redox, coordination and structural properties, there is to be found music indeed, notable not always for its harmony but invariably for its richness and variety. Thisbook seeks to redress the balance with a definitive, wide-rangingand up-to-date review of the chemistry of the Group 13 metals aluminium, gallium, indium and thallium.