Using the Mathematics Literature


Book Description

This reference serves as a reader-friendly guide to every basic tool and skill required in the mathematical library and helps mathematicians find resources in any format in the mathematics literature. It lists a wide range of standard texts, journals, review articles, newsgroups, and Internet and database tools for every major subfield in mathematics and details methods of access to primary literature sources of new research, applications, results, and techniques. Using the Mathematics Literature is the most comprehensive and up-to-date resource on mathematics literature in both print and electronic formats, presenting time-saving strategies for retrieval of the latest information.




Sciencia


Book Description

Collects six short illustrated volumes covering topics in mathematics, physics, chemistry, biology, evolution, and astronomy.




Fundamentals of Scientific Mathematics


Book Description

Rewarding undergraduate text, derived from an experimental program in teaching mathematics at the secondary-school level. This text provides a good introduction to geometry and matrices, vector algebra, analytic geometry, functions, and differential and integral calculus. "...solid modern mathematical content..." — American Scientist. Over 200 figures. 1964 edition.




Science, Seti, and Mathematics


Book Description

Mathematics is as much a part of our humanity as music and art. And it is our mathematics that might be understandable, even familiar, to a distant race and might provide the basis for mutual communication. This book discusses, in a conversational way, the role of mathematics in the search for extraterrestrial intelligence. The author explores the science behind that search, its history, and the many questions associated with it, including those regarding the nature of language and the philosophical/psychological motivation behind this search.




Science and Mathematics


Book Description

This book offers an engaging and comprehensive introduction to scientific theories and the evolution of science and mathematics through the centuries. It discusses the history of scientific thought and ideas and the intricate dynamic between new scientific discoveries, scientists, culture and societies. Through stories and historical accounts, the volume illustrates the human engagement and preoccupation with science and the interpretation of natural phenomena. It highlights key scientific breakthroughs from the ancient to later ages, giving us accounts of the work of ancient Greek and Indian mathematicians and astronomers, as well as of the work of modern scientists like Descartes, Newton, Planck, Mendel and many more. The author also discusses the vast advancements which have been made in the exploration of space, matter and genetics and their relevance in the advancement of the scientific tradition. He provides great insights into the process of scientific experimentation and the relationship between science and mathematics. He also shares amusing anecdotes of scientists and their interactions with the world around them. Detailed and accessible, this book will be of great interest to students and researchers of science, mathematics, the philosophy of science, science and technology studies and history. It will also be useful for general readers who are interested in the history of scientific discoveries and ideas.




Mathematics And The Natural Sciences: The Physical Singularity Of Life


Book Description

This book identifies the organizing concepts of physical and biological phenomena by an analysis of the foundations of mathematics and physics. Our aim is to propose a dialog between different conceptual universes and thus to provide a unification of phenomena. The role of “order” and symmetries in the foundations of mathematics is linked to the main invariants and principles, among them the geodesic principle (a consequence of symmetries), which govern and confer unity to various physical theories. Moreover, an attempt is made to understand causal structures, a central element of physical intelligibility, in terms of both symmetries and symmetry breakings. A distinction between the principles of (conceptual) construction and of proofs, both in physics and in mathematics, guides most of the work.The importance of mathematical tools is also highlighted to clarify differences in the models for physics and biology that are proposed by continuous and discrete mathematics, such as computational simulations.Since biology is particularly complex and not as well understood at a theoretical level, we propose a “unification by concepts” which in any case should precede mathematization. This constitutes an outline for unification also based on highlighting conceptual differences, complex points of passage and technical irreducibilities of one field to another. Indeed, we suppose here a very common monist point of view, namely the view that living objects are “big bags of molecules”. The main question though is to understand which “theory” can help better understand these bags of molecules. They are, indeed, rather “singular”, from the physical point of view. Technically, we express this singularity through the concept of “extended criticality”, which provides a logical extension of the critical transitions that are known in physics. The presentation is mostly kept at an informal and conceptual level./a




Space Mathematics


Book Description

Created by NASA for high school students interested in space science, this collection of worked problems covers a broad range of subjects, including mathematical aspects of NASA missions, computation and measurement, algebra, geometry, probability and statistics, exponential and logarithmic functions, trigonometry, matrix algebra, conic sections, and calculus. In addition to enhancing mathematical knowledge and skills, these problems promote an appreciation of aerospace technology and offer valuable insights into the practical uses of secondary school mathematics by professional scientists and engineers. Geared toward high school students and teachers, this volume also serves as a fine review for undergraduate science and engineering majors. Numerous figures illuminate the text, and an appendix explores the advanced topic of gravitational forces and the conic section trajectories.




Responsive Teaching in Science and Mathematics


Book Description

Answering calls in recent reform documents to shape instruction in response to students’ ideas while integrating key concepts and scientific and/or mathematical practices, this text presents the concept of responsive teaching, synthesizes existing research, and examines implications for both research and teaching. Case studies across the curriculum from elementary school through adult education illustrate the variety of forms this approach to instruction and learning can take, what is common among them, and how teachers and students experience it. The cases include intellectual products of students’ work in responsive classrooms and address assessment methods and issues. Many of the cases are supplemented with online resources (http://www.studentsthinking.org/rtsm) including classroom video and extensive transcripts, providing readers with additional opportunities to immerse themselves in responsive classrooms and to see for themselves what these environments look and feel like.




Science and Mathematics Education for 21st Century Citizens


Book Description

"This book addresses the challenges that face science and mathematics education if it is to be relevant to 21st century citizens, as well as the ways that outstanding specialists from several countries around the world think it should deal with those challenges. Starting with the issue of science and mathematics teacher education in a changing world, it moves on to deal with innovative approaches to teaching science and mathematics. It then discusses contemporary issues related to the role played by technology in science and mathematics education, the challenges of the STEM agenda, and ways of making science and mathematics education more inclusive. Finally, it focuses on assessment issues, as the success of science and mathematics education depends at least in part on the purposes for which, and ways in which, students' learning is assessed. There is a worldwide trend towards providing meaningful science and mathematics education to all children for the sake of literacy and numeracy development and a need to produce enough science and technology specialists. This trend and need, coupled with the concern raised by students' disengagement in these two knowledge areas and the role that technology may play in countering it, put increasingly high demands on teachers. As shown in this book, science and mathematics education may offer a unique contribution in developing responsible citizens by fostering skills required in order to assume wider responsibilities and roles, focusing on personal, social and environmental dimensions. For instance, it offers unique insights into how teachers can build on students' complicated and interconnected real-worlds to help them learn authentic and relevant science and mathematics. Additionally, the book highlights potential positive relationships between science and mathematics, which are often envisaged as having a conflicting relationship in school curricula. By uncovering the similarities between them, and by providing evidence that both areas deal with issues that are relevant for citizens' daily lives, the book explores ways of linking and giving coherence to science and mathematics knowledge as components of everyday life settings. It also provides directions for future research on the educational potential of interconnecting science and mathematics at the different educational levels. Therefore, this is a worthwhile book for researchers, teacher educators and schoolteachers. It covers theoretical perspectives, research-based approaches and practical applications that may make a difference in education that is relevant and inclusive for citizens in the 21st century"--




Empowering Science and Mathematics Education in Urban Schools


Book Description

Argues that teachers and schools should create hybrid third spaces--neither classroom nor home--in which underserved students can merge their personal worlds with those of math and science.