Lithium


Book Description

Lithium is a chemical element with unique properties. Its applications in todays world are countless, from psychiatry to cell phones, and we are still far from exploiting all the exotic signatures of this amazing metal. Even so, the reader will find here a good sample of what is being investigated at present in the field of lithium chemistry and future applications in the new energy supply concepts.




The Chemistry of Lithium, Sodium, Potassium, Rubidium, Cesium and Francium


Book Description

The Chemistry of Lithium, Sodium, Potassium, Rubidium, Cesium, and Francium studies the physical and chemical properties of the elements listed in the title, including their chemical compounds and reactions. This book first features lithium, including its characterization, metals, and compounds. This topic is followed by discussions on the remaining featured elements in this text, encompassing their discovery and history, occurrence and distribution, and production. Then, this text presents the chemistry and chemical properties of the elements, specifically discussing topics such as the reactions of the metals, intermetallic compounds, hydrides, halides, cyanides and cyanates, and oxides and peroxides. The last two chapters examine biological activity and analytical chemistry of the elements. This book will be valuable to students and experts in the field of chemistry, as well as those in related fields.




Lithium Process Chemistry


Book Description

Lithium Process Chemistry: Resources, Extraction, Batteries and Recycling presents, for the first time, the most recent developments and state-of-the-art of lithium production, lithium-ion batteries, and their recycling. The book provides fundamental and theoretical knowledge on hydrometallurgy and electrochemistry in lithium-ion batteries, including terminology related to these two fields. It is of particular interest to electrochemists who usually have no knowledge in hydrometallurgy and hydrometallurgists not familiar with electrochemistry applied to Li-ion batteries. It is also useful for both teachers and students, presenting an overview on Li production, Li-ion battery technologies, and lithium battery recycling processes that is accompanied by numerous graphical presentations of different battery systems and their electrochemical performances. The book represents the first time that hydrometallurgy and electrochemistry on lithium-ion batteries are assembled in one unique source. - Provides fundamental and theoretical knowledge on hydrometallurgy and electrochemistry in lithium-ion batteries - Represents the first time that hydrometallurgy and electrochemistry on lithium-ion batteries are assembled in one unique source. - Ideal for both electrochemists who usually have no knowledge in hydrometallurgy and hydrometallurgists not familiar with electrochemistry applied to Li-ion batteries - Presents recent developments, as well as challenges in lithium production and lithium-ion battery technologies and their recycling - Covers examples of Li processes production with schematics, also including numerous graphical presentations of different battery systems and their electrochemical performances




Lithium Chemistry


Book Description

An up-to-date, comprehensive guide to LITHIUM CHEMISTRY Although lithium has been the subject of numerous individualstudies, this intriguing element has rarely been examined from thebroad perspective many researchers require. Lithium Chemistry: ATheoretical and Experimental Overview fills this void by providingthe most thorough and up-to-date overview available of currenttheories and experimental data. Supported by nearly two hundred illustrations, this book draws uponthe expertise of prominent researchers in the field, and treats thefull range of modern applications and techniques. The result is aunique and invaluable guide to lithium studies for researchers andgraduate students working in the fields of organic, inorganic, andorgano-metallic chemistry. Lithium Chemistry: A Theoretical and Experimental Overview assumesa background in quantum chemistry and experimental physicalchemistry at the graduate level and includes coverage of thesemajor topics: * Bonding, structures, and energies in organolithium compounds * Theoretical studies of aggregates of lithium compounds * Comparison of lithium and hydrogen bonds * Lithium atom matrix reactions with small molecules * NMR of organolithium compounds * Aspects of the thermochemistry of lithium compounds * The structure of lithiated amines and lithiated ethers--fromcarbanions to carbenoids * Complexes of inorganic lithium salts * Structures of lithium salts of heteroatom compounds * Synthetic ionophores for lithium ions




Lithium Batteries


Book Description

Lithium Batteries: Science and Technology is an up-to-date and comprehensive compendium on advanced power sources and energy related topics. Each chapter is a detailed and thorough treatment of its subject. The volume includes several tutorials and contributes to an understanding of the many fields that impact the development of lithium batteries. Recent advances on various components are included and numerous examples of innovation are presented. Extensive references are given at the end of each chapter. All contributors are internationally recognized experts in their respective specialty. The fundamental knowledge necessary for designing new battery materials with desired physical and chemical properties including structural, electronic and reactivity are discussed. The molecular engineering of battery materials is treated by the most advanced theoretical and experimental methods.




Lithium-Ion Batteries


Book Description

Written by a group of top scientists and engineers in academic and industrial R&D, Lithium-Ion Batteries: Advanced Materials and Technologies gives a clear picture of the current status of these highly efficient batteries. Leading international specialists from universities, government laboratories, and the lithium-ion battery industry share th




Lithium-Ion Batteries


Book Description

Lithium-Ion Batteries features an in-depth description of different lithium-ion applications, including important features such as safety and reliability. This title acquaints readers with the numerous and often consumer-oriented applications of this widespread battery type. Lithium-Ion Batteries also explores the concepts of nanostructured materials, as well as the importance of battery management systems. This handbook is an invaluable resource for electrochemical engineers and battery and fuel cell experts everywhere, from research institutions and universities to a worldwide array of professional industries. - Contains all applications of consumer and industrial lithium-ion batteries, including reviews, in a single volume - Features contributions from the world's leading industry and research experts - Presents executive summaries of specific case studies - Covers information on basic research and application approaches




Lithium-Ion Batteries


Book Description

Here in a single source is an up-to-date description of the technology associated with the Li-Ion battery industry. It will be useful as a text for researchers interested in energy conversion for the direct conversion of chemical energy into electrical energy.




Lithium-Ion Batteries


Book Description

This is the first machine-generated scientific book in chemistry published by Springer Nature. Serving as an innovative prototype defining the current status of the technology, it also provides an overview about the latest trends of lithium-ion batteries research. This book explores future ways of informing researchers and professionals. State-of-the-art computer algorithms were applied to: select relevant sources from Springer Nature publications, arrange these in a topical order, and provide succinct summaries of these articles. The result is a cross-corpora auto-summarization of current texts, organized by means of a similarity-based clustering routine in coherent chapters and sections. This book summarizes more than 150 research articles published from 2016 to 2018 and provides an informative and concise overview of recent research into anode and cathode materials as well as further aspects such as separators, polymer electrolytes, thermal behavior and modelling. With this prototype, Springer Nature has begun an innovative journey to explore the field of machine-generated content and to find answers to the manifold questions on this fascinating topic. Therefore it was intentionally decided not to manually polish or copy-edit any of the texts so as to highlight the current status and remaining boundaries of machine-generated content. Our goal is to initiate a broad discussion, together with the research community and domain experts, about the future opportunities, challenges and limitations of this technology.