Liutex and Its Applications in Turbulence Research


Book Description

Liutex and Its Applications in Turbulence Research reviews the history of vortex definition, provides an accurate mathematical definition of vortices, and explains their applications in flow transition, turbulent flow, flow control, and turbulent flow experiments. The book explains the term "Rortex" as a mathematically defined rigid rotation of fluids or vortex, which could help solve many longstanding problems in turbulence research. The accurate mathematical definition of the vortex is important in a range of industrial contexts, including aerospace, turbine machinery, combustion, and electronic cooling systems, so there are many areas of research that can benefit from the innovations described here. This book provides a thorough survey of the latest research in generalized and flow-thermal, unified, law-of-the-wall for wall-bounded turbulence. Important theory and methodologies used for developing these laws are described in detail, including: the classification of the conventional turbulent boundary layer concept based on proper velocity scaling; the methodology for identification of the scales of velocity, temperature, and length needed to establish the law; and the discovery, proof, and strict validations of the laws, with both Reynolds and Prandtl number independency properties using DNS data. The establishment of these statistical laws is important to modern fluid mechanics and heat transfer research, and greatly expands our understanding of wall-bounded turbulence. - Provides an accurate mathematical definition of vortices - Provides a thorough survey of the latest research in generalized and flow-thermal, unified, law-of-the-wall for wall-bounded turbulence - Explains the term "Rortex as a mathematically defined rigid rotation of fluids or vortex - Covers the statistical laws important to modern fluid mechanics and heat transfer research, and greatly expands our understanding of wall-bounded turbulence




Liutex and Third Generation of Vortex Definition and Identification


Book Description

This book collects papers presented in the Invited Workshop, “Liutex and Third Generation of Vortex Definition and Identification for Turbulence,” from CHAOS2020, June 9-12, 2020, which was held online as a virtual conference. Liutex is a new physical quantity introduced by Prof. Chaoqun Liu of the University of Texas at Arlington. It is a vector and could give a unique and accurate mathematical definition for fluid rotation or vortex. The papers in this volume include some Liutex theories and many applications in hydrodynamics, aerodynamics and thermal dynamics including turbine machinery. As vortex exists everywhere in the universe, a mathematical definition of vortex or Liutex will play a critical role in scientific research. There is almost no place without vortex in fluid dynamics. As a projection, the Liutex theory will play an important role on the investigations of the vortex dynamics in hydrodynamics, aerodynamics, thermodynamics, oceanography, meteorology, metallurgy, civil engineering, astronomy, biology, etc. and to the researches of the generation, sustenance, modelling and controlling of turbulence.




Liutex and Third Generation of Vortex Identification


Book Description

This proceedings highlights the applications of the newly introduced physical quantity Liutex in hydrodynamics and aerodynamics. Liutex is used to represent the fascinating rotational motion of fluids, i.e., the vortex. Ubiquitously seen in nature and engineering applications, the definition of vortices has been elusive. The Liutex vector provides a unique and systematic description of vortices. The proceedings collects papers presented in the invited workshop "Liutex and Third Generation of Vortex Identification for Engineering Applications" from Aerospace and Aeronautics World Forum 2021. The papers in this book cover both the theoretical aspects of Liutex and many applications in hydrodynamics and aerodynamics. The proceedings is a good reference for researchers in fluid mechanics who are interested in learning about the wide scope of applications of Liutex and using it to develop a new understanding of their research subjects.




Computational Fluid Dynamics


Book Description

An introduction to CFD fundamentals and using commercial CFD software to solve engineering problems, designed for the wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step by step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. The first book in the field aimed at CFD users rather than developers. New to this edition: A more comprehensive coverage of CFD techniques including discretisation via finite element and spectral element as well as finite difference and finite volume methods and multigrid method. Coverage of different approaches to CFD grid generation in order to closely match how CFD meshing is being used in industry. Additional coverage of high-pressure fluid dynamics and meshless approach to provide a broader overview of the application areas where CFD can be used. 20% new content .




Vortex Simulation and Identification


Book Description

This book includes six chapters covering new vortex theories, vortex identification methods, and vortex simulation and applications. Vortices are ubiquitous in the universe and include tornados, hurricanes, airplane tip vortices, polar vortices, and even star vortices in the galaxy. Vortices are also building blocks, muscles, and sinews of turbulent flows. This book is useful for researchers in hydrodynamics, aerodynamics, thermodynamics, oceanography, meteorology, metallurgy, civil engineering, astronomy, biology, and more. It is also useful for research on the generation, sustenance, modeling, and controlling of turbulence.







Solid State PhysicsMetastable, Spintronics Materials and Mechanics of Deformable Bodies


Book Description

This book describes the recent evolution of solid-state physics, which is primarily dedicated to examining the behavior of solids at the atomic scale. It also presents various state-of-the-art reviews and original contributions related to solid-state sciences. The book consists of four sections, namely, solid-state behavior, metastable materials, spintronics materials, and mechanics of deformable bodies. The authors’ contributions relating to solid-state behavior deal with the performance of solid matters pertaining to quantum mechanics, physical metallurgy, and crystallography. The authors’ contributions relating to metastable materials demonstrate the behavior of amorphous/bulk metallic glasses and some nonequilibrium materials. The authors’ contributions relating to spintronic materials explain the principles and equations underlying the physics, transport, and dynamics of spin in solid-state systems. The authors’ contributions relating to the mechanics of deformable bodies deal with applications of numeric and analytic solutions/models for solid-state structures under deformation. Key Features:Issues in solid-state physics, Lagrangian quantum mechanics,Quantum and thermal behavior of HCP crystals,Thermoelectric properties of semiconductors,Bulk metallic glasses and metastable atomic density determination,Applications of spintronics and Heusler alloys, 2D elastostatic, mathematical modeling and dynamic stiffness methods on deformable bodies.




Ship Dynamics for Performance Based Design and Risk Averse Operations


Book Description

More than a century and half ago, William Froude and his son Robert [1,2] conducted the first scientifically designed towing tank experiments using scaled ship models traveling in calm water or waves. Since then, advances in mathematics and technology have led to the development of various methods for the assessment of the dynamic behavior of ships. Yet, as we enter the 2nd decade of the 21st century the advent of goal-based regulations and the emergence of safe and sustainable shipping standards still confront our ability to understand the fundamentals and assure absolute ship safety in design and operations. To instigate renewed interest in the well-rehearsed subject of ship dynamics this Special Issue presents a collection of 12 high-quality research contributions with a focus on the prediction and analysis of the dynamic behavior of ships in a stochastic environment. The papers presented are co-authored by leading subject matter experts from Europe, the Far East, and the USA. These papers will be of interest to academics, practitioners, and regulators involved in the progression of ship science, technical services, and safety standards.




Computational Fluid Dynamics


Book Description

Computational Fluid Dynamics: A Practical Approach, Third Edition, is an introduction to CFD fundamentals and commercial CFD software to solve engineering problems. The book is designed for a wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step-by-step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. This new edition has been updated throughout, with new content and improved figures, examples and problems. - Includes a new chapter on practical guidelines for mesh generation - Provides full coverage of high-pressure fluid dynamics and the meshless approach to provide a broader overview of the application areas where CFD can be used - Includes online resources with a new bonus chapter featuring detailed case studies and the latest developments in CFD




Shock Wave-Boundary-Layer Interactions


Book Description

Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.