Highway Bridge Superstructure Engineering


Book Description

A How-To Guide for Bridge Engineers and Designers Highway Bridge Superstructure Engineering: LRFD Approaches to Design and Analysis provides a detailed discussion of traditional structural design perspectives, and serves as a state-of-the-art resource on the latest design and analysis of highway bridge superstructures. This book is applicable to highway bridges of all construction and material types, and is based on the load and resistance factor design (LRFD) philosophy. It discusses the theory of probability (with an explanation leading to the calibration process and reliability), and includes fully solved design examples of steel, reinforced and prestressed concrete bridge superstructures. It also contains step-by-step calculations for determining the distribution factors for several different types of bridge superstructures (which form the basis of load and resistance design specifications) and can be found in the AASHTO LRFD Bridge Design Specifications. Fully Realize the Basis and Significance of LRFD Specifications Divided into six chapters, this instructive text: Introduces bridge engineering as a discipline of structural design Describes numerous types of highway bridge superstructures systems Presents a detailed discussion of various types of loads that act on bridge superstructures and substructures Discusses the methods of analyses of highway bridge superstructures Includes a detailed discussion of reinforced and prestressed concrete bridges, and slab-steel girder bridges Highway Bridge Superstructure Engineering: LRFD Approaches to Design and Analysis can be used for teaching highway bridge design courses to undergraduate- and graduate-level classes, and as an excellent resource for practicing engineers.







Methods for Increasing Live Load Capacity of Existing Highway Bridges


Book Description

This synthesis will be of interest to state department of transportation bridge design and structural engineers, bridge consultants, and others involved in applied and research methods for increasing the live load capacity of existing highway bridges. The synthesis describes the current state of the practice for the various methods used to increase the live load capacity of existing highway bridges. This is done predominantly for bridges in the short- to medium-span range. Information on the more common bridge material types is presented. There is an emphasis on superstructure rather than substructure strengthening.




Innovative Bridge Design Handbook


Book Description

Innovative Bridge Design Handbook: Construction, Rehabilitation, and Maintenance, Second Edition, brings together the essentials of bridge engineering across design, assessment, research and construction. Written by an international group of experts, each chapter is divided into two parts: the first covers design issues, while the second presents current research into the innovative design approaches used across the world. This new edition includes new topics such as foot bridges, new materials in bridge engineering and soil-foundation structure interaction. All chapters have been updated to include the latest concepts in design, construction, and maintenance to reduce project cost, increase structural safety, and maximize durability. Code and standard references have been updated. - Completely revised and updated with the latest in bridge engineering and design - Provides detailed design procedures for specific bridges with solved examples - Presents structural analysis including numerical methods (FEM), dynamics, risk and reliability, and innovative structural typologies




Masters Theses in the Pure and Applied Sciences


Book Description

Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS)* at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dis semination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all concerned if the printing and distribution of the volumes were handled by an international publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Corporation of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 39 (thesis year 1994) a total of 13,953 thesis titles from 21 Canadian and 159 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this impor tant annual reference work. While Volume 39 reports theses submitted in 1994, on occasion, certain uni versities do report theses submitted in previous years but not reported at the time.




Steel Box Girder Bridges


Book Description




Welding Journal


Book Description

"Current welding literature" included in each volume.




Concrete Box-girder Bridges


Book Description




Simplified Live Load Distribution Factor Equations


Book Description

This report contains the findings of research performed to develop recommended Load and Resistance Factor Design (LRFD) live load distribution factor design equations for shear and moment. The report details the development of equations that are simpler to apply and have a wider range of applicability than current methods. The appendices are not published in this report, but are available online at http://www.trb.org/news/blurb_detail.asp?id=7938.




Distribution of Wheel Loads on Highway Bridges


Book Description

"This synthesis will be useful to bridge engineers and others concerned with the design and structural evaluation of highway bridges. Information is presented on various approaches currently used to calculate the distribution of wheel loads among the supporting members in bridge superstructures."--Avant-propos.