The Black Experience in Design


Book Description

The Black Experience in Design spotlights teaching practices, research, stories, and conversations from a Black/African diasporic lens. Excluded from traditional design history and educational canons that heavily favor European modernist influences, the work and experiences of Black designers have been systematically overlooked in the profession for decades. However, given the national focus on diversity, equity, and inclusion in the aftermath of the nationwide Black Lives Matter protests in the United States, educators, practitioners, and students now have the opportunity—as well as the social and political momentum—to make long-term, systemic changes in design education, research, and practice, reclaiming the contributions of Black designers in the process. The Black Experience in Design, an anthology centering a range of perspectives, spotlights teaching practices, research, stories, and conversations from a Black/African diasporic lens. Through the voices represented, this text exemplifies the inherently collaborative and multidisciplinary nature of design, providing access to ideas and topics for a variety of audiences, meeting people as they are and wherever they are in their knowledge about design. Ultimately, The Black Experience in Design serves as both inspiration and a catalyst for the next generation of creative minds tasked with imagining, shaping, and designing our future.




LLM Engineer's Handbook


Book Description

Step into the world of LLMs with this practical guide that takes you from the fundamentals to deploying advanced applications using LLMOps best practices Key Features Build and refine LLMs step by step, covering data preparation, RAG, and fine-tuning Learn essential skills for deploying and monitoring LLMs, ensuring optimal performance in production Utilize preference alignment, evaluation, and inference optimization to enhance performance and adaptability of your LLM applications Book DescriptionArtificial intelligence has undergone rapid advancements, and Large Language Models (LLMs) are at the forefront of this revolution. This LLM book offers insights into designing, training, and deploying LLMs in real-world scenarios by leveraging MLOps best practices. The guide walks you through building an LLM-powered twin that’s cost-effective, scalable, and modular. It moves beyond isolated Jupyter notebooks, focusing on how to build production-grade end-to-end LLM systems. Throughout this book, you will learn data engineering, supervised fine-tuning, and deployment. The hands-on approach to building the LLM Twin use case will help you implement MLOps components in your own projects. You will also explore cutting-edge advancements in the field, including inference optimization, preference alignment, and real-time data processing, making this a vital resource for those looking to apply LLMs in their projects. By the end of this book, you will be proficient in deploying LLMs that solve practical problems while maintaining low-latency and high-availability inference capabilities. Whether you are new to artificial intelligence or an experienced practitioner, this book delivers guidance and practical techniques that will deepen your understanding of LLMs and sharpen your ability to implement them effectively.What you will learn Implement robust data pipelines and manage LLM training cycles Create your own LLM and refine it with the help of hands-on examples Get started with LLMOps by diving into core MLOps principles such as orchestrators and prompt monitoring Perform supervised fine-tuning and LLM evaluation Deploy end-to-end LLM solutions using AWS and other tools Design scalable and modularLLM systems Learn about RAG applications by building a feature and inference pipeline Who this book is for This book is for AI engineers, NLP professionals, and LLM engineers looking to deepen their understanding of LLMs. Basic knowledge of LLMs and the Gen AI landscape, Python and AWS is recommended. Whether you are new to AI or looking to enhance your skills, this book provides comprehensive guidance on implementing LLMs in real-world scenarios




The Developer's Playbook for Large Language Model Security


Book Description

Large language models (LLMs) are not just shaping the trajectory of AI, they're also unveiling a new era of security challenges. This practical book takes you straight to the heart of these threats. Author Steve Wilson, chief product officer at Exabeam, focuses exclusively on LLMs, eschewing generalized AI security to delve into the unique characteristics and vulnerabilities inherent in these models. Complete with collective wisdom gained from the creation of the OWASP Top 10 for LLMs list—a feat accomplished by more than 400 industry experts—this guide delivers real-world guidance and practical strategies to help developers and security teams grapple with the realities of LLM applications. Whether you're architecting a new application or adding AI features to an existing one, this book is your go-to resource for mastering the security landscape of the next frontier in AI. You'll learn: Why LLMs present unique security challenges How to navigate the many risk conditions associated with using LLM technology The threat landscape pertaining to LLMs and the critical trust boundaries that must be maintained How to identify the top risks and vulnerabilities associated with LLMs Methods for deploying defenses to protect against attacks on top vulnerabilities Ways to actively manage critical trust boundaries on your systems to ensure secure execution and risk minimization







Database Design and Modeling with Google Cloud


Book Description

Build faster and efficient real-world applications on the cloud with a fitting database model that's perfect for your needs Key Features Familiarize yourself with business and technical considerations involved in modeling the right database Take your data to applications, analytics, and AI with real-world examples Learn how to code, build, and deploy end-to-end solutions with expert advice Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionIn the age of lightning-speed delivery, customers want everything developed, built, and delivered at high speed and at scale. Knowledge, design, and choice of database is critical in that journey, but there is no one-size-fits-all solution. This book serves as a comprehensive and practical guide for data professionals who want to design and model their databases efficiently. The book begins by taking you through business, technical, and design considerations for databases. Next, it takes you on an immersive structured database deep dive for both transactional and analytical real-world use cases using Cloud SQL, Spanner, and BigQuery. As you progress, you’ll explore semi-structured and unstructured database considerations with practical applications using Firestore, cloud storage, and more. You’ll also find insights into operational considerations for databases and the database design journey for taking your data to AI with Vertex AI APIs and generative AI examples. By the end of this book, you will be well-versed in designing and modeling data and databases for your applications using Google Cloud.What you will learn Understand different use cases and real-world applications of data in the cloud Work with document and indexed NoSQL databases Get to grips with modeling considerations for analytics, AI, and ML Use real-world examples to learn about ETL services Design structured, semi-structured, and unstructured data for your applications and analytics Improve observability, performance, security, scalability, latency SLAs, SLIs, and SLOs Who this book is for This book is for database developers, data engineers, and architects looking to design, model, and build database applications on the cloud with an extended focus on operational consideration and taking their data to AI. Data scientists, as well ML and AI engineers who want to use Google Cloud services in the data to AI journey will also find plenty of useful information in this book. It will also be useful to data analysts and BI developers who want to use SQL impactfully to generate ML and generative AI insights from their data.




Artificial Intelligence


Book Description

Artificial Intelligence (AI) revolves around creating and utilizing intelligent machines through science and engineering. This book delves into the theory and practical applications of computer science methods that incorporate AI across many domains. It covers techniques such as Machine Learning (ML), Convolutional Neural Networks (CNN), Deep Learning (DL), and Large Language Models (LLM) to tackle complex issues and overcome various challenges.




LLMs and Generative AI for Healthcare


Book Description

Large language models (LLMs) and generative AI are rapidly changing the healthcare industry. These technologies have the potential to revolutionize healthcare by improving the efficiency, accuracy, and personalization of care. This practical book shows healthcare leaders, researchers, data scientists, and AI engineers the potential of LLMs and generative AI today and in the future, using storytelling and illustrative use cases in healthcare. Authors Kerrie Holley, former Google healthcare professionals, guide you through the transformative potential of large language models (LLMs) and generative AI in healthcare. From personalized patient care and clinical decision support to drug discovery and public health applications, this comprehensive exploration covers real-world uses and future possibilities of LLMs and generative AI in healthcare. With this book, you will: Understand the promise and challenges of LLMs in healthcare Learn the inner workings of LLMs and generative AI Explore automation of healthcare use cases for improved operations and patient care using LLMs Dive into patient experiences and clinical decision-making using generative AI Review future applications in pharmaceutical R&D, public health, and genomics Understand ethical considerations and responsible development of LLMs in healthcare "The authors illustrate generative's impact on drug development, presenting real-world examples of its ability to accelerate processes and improve outcomes across the pharmaceutical industry."--Harsh Pandey, VP, Data Analytics & Business Insights, Medidata-Dassault Kerrie Holley is a retired Google tech executive, IBM Fellow, and VP/CTO at Cisco. Holley's extensive experience includes serving as the first Technology Fellow at United Health Group (UHG), Optum, where he focused on advancing and applying AI, deep learning, and natural language processing in healthcare. Manish Mathur brings over two decades of expertise at the crossroads of healthcare and technology. A former executive at Google and Johnson & Johnson, he now serves as an independent consultant and advisor. He guides payers, providers, and life sciences companies in crafting cutting-edge healthcare solutions.







Recent Advances in Mineral Processing Plant Design


Book Description

A compilation of engaging and insightful papers from the prestigious 2009 Plant Design Symposium, the volume is a sequel to Mineral Processing Plant Design, Practice, and Control, an industry standard published in 2002. Both books are indispensable texts for university-level instruction, as well as valuable guides for operators considering new construction, plant renovation, or expansion. You'll learn the role of innovation, how to finance and conduct feasibility studies, and how to reduce your plant's carbon footprint.




Innovative Developments in Design and Manufacturing


Book Description

Essential reading on the latest advances in virtual prototyping and rapid manufacturing. Includes 110 peer reviewed papers covering: 1. Biomanufacturing, 2. CAD and 3D data acquisition technologies, 3. Materials, 4. Rapid tooling and manufacturing, 5. Advanced rapid prototyping technologies and nanofabrication, 6. Virtual environments and