Nonlinear and Optimal Control Theory


Book Description

The lectures gathered in this volume present some of the different aspects of Mathematical Control Theory. Adopting the point of view of Geometric Control Theory and of Nonlinear Control Theory, the lectures focus on some aspects of the Optimization and Control of nonlinear, not necessarily smooth, dynamical systems. Specifically, three of the five lectures discuss respectively: logic-based switching control, sliding mode control and the input to the state stability paradigm for the control and stability of nonlinear systems. The remaining two lectures are devoted to Optimal Control: one investigates the connections between Optimal Control Theory, Dynamical Systems and Differential Geometry, while the second presents a very general version, in a non-smooth context, of the Pontryagin Maximum Principle. The arguments of the whole volume are self-contained and are directed to everyone working in Control Theory. They offer a sound presentation of the methods employed in the control and optimization of nonlinear dynamical systems.




Real Methods in Complex and CR Geometry


Book Description

The geometry of real submanifolds in complex manifolds and the analysis of their mappings belong to the most advanced streams of contemporary Mathematics. In this area converge the techniques of various and sophisticated mathematical fields such as P.D.E.s, boundary value problems, induced equations, analytic discs in symplectic spaces, complex dynamics. For the variety of themes and the surprisingly good interplaying of different research tools, these problems attracted the attention of some among the best mathematicians of these latest two decades. They also entered as a refined content of an advanced education. In this sense the five lectures of this volume provide an excellent cultural background while giving very deep insights of current research activity.




Analytic Number Theory


Book Description

The four papers collected in this book discuss advanced results in analytic number theory, including recent achievements of sieve theory leading to asymptotic formulae for the number of primes represented by suitable polynomials; counting integer solutions to Diophantine equations, using results from algebraic geometry and the geometry of numbers; the theory of Siegel’s zeros and of exceptional characters of L-functions; and an up-to-date survey of the axiomatic theory of L-functions introduced by Selberg.




Geometric Analysis and PDEs


Book Description

This volume contains lecture notes on key topics in geometric analysis, a growing mathematical subject which uses analytical techniques, mostly of partial differential equations, to treat problems in differential geometry and mathematical physics.




SELF-HELP TO I.C.S.E. FOUNDATION MATH 10 (FOR 2022-23 EXAMINATIONS)


Book Description

This book is written strictly in accordance with the latest syllabus prescribed by the Council for the I.C.S.E. Examinations in and after 2023. This book includes the Answers to the Questions given in the Textbook Foundation Mathematics Class 10 published by Goyal Prakshan Pvt. Ltd. This book is written by I.S. Chawla.




Self-Help to ICSE Foundation Mathematics 10 (For 2022 Examinations)


Book Description

This book includes the solutions of the questions given in the textbook of ICSE Foundation Mathematics Class 10 published by Goyal Bros. and is for 2022 Examinatios.




Stability of Queueing Networks


Book Description

Queueing networks constitute a large family of stochastic models, involving jobs that enter a network, compete for service, and eventually leave the network upon completion of service. Since the early 1990s, substantial attention has been devoted to the question of when such networks are stable. This volume presents a summary of such work. Emphasis is placed on the use of fluid models in showing stability, and on examples of queueing networks that are unstable even when the arrival rate is less than the service rate. The material of this volume is based on a series of nine lectures given at the Saint-Flour Probability Summer School 2006. Lectures were also given by Alice Guionnet and Steffen Lauritzen.




Lectures on Topological Fluid Mechanics


Book Description

This volume contains a wide-ranging collection of valuable research papers written by some of the most eminent experts in the field. Topics range from fundamental aspects of mathematical fluid mechanics to DNA tangles and knotted DNAs in sedimentation.




Nonlinear Optimization


Book Description

This volume collects the expanded notes of four series of lectures given on the occasion of the CIME course on Nonlinear Optimization held in Cetraro, Italy, from July 1 to 7, 2007. The Nonlinear Optimization problem of main concern here is the problem n of determining a vector of decision variables x ? R that minimizes (ma- n mizes) an objective function f(·): R ? R,when x is restricted to belong n to some feasible setF? R , usually described by a set of equality and - n n m equality constraints: F = {x ? R : h(x)=0,h(·): R ? R ; g(x) ? 0, n p g(·): R ? R }; of course it is intended that at least one of the functions f,h,g is nonlinear. Although the problem canbe stated in verysimpleterms, its solution may result very di?cult due to the analytical properties of the functions involved and/or to the number n,m,p of variables and constraints. On the other hand, the problem has been recognized to be of main relevance in engineering, economics, and other applied sciences, so that a great lot of e?ort has been devoted to develop methods and algorithms able to solve the problem even in its more di?cult and large instances. The lectures have been given by eminent scholars, who contributed to a great extent to the development of Nonlinear Optimization theory, methods and algorithms. Namely, they are: – Professor Immanuel M.