Local Systems in Algebraic-Arithmetic Geometry


Book Description

The topological fundamental group of a smooth complex algebraic variety is poorly understood. One way to approach it is to consider its complex linear representations modulo conjugation, that is, its complex local systems. A fundamental problem is then to single out the complex points of such moduli spaces which correspond to geometric systems, and more generally to identify geometric subloci of the moduli space of local systems with special arithmetic properties. Deep conjectures have been made in relation to these problems. This book studies some consequences of these conjectures, notably density, integrality and crystallinity properties of some special loci. This monograph provides a unique compelling and concise overview of an active area of research and is useful to students looking to get into this area. It is of interest to a wide range of researchers and is a useful reference for newcomers and experts alike.




Noncommutative Geometry and Number Theory


Book Description

In recent years, number theory and arithmetic geometry have been enriched by new techniques from noncommutative geometry, operator algebras, dynamical systems, and K-Theory. This volume collects and presents up-to-date research topics in arithmetic and noncommutative geometry and ideas from physics that point to possible new connections between the fields of number theory, algebraic geometry and noncommutative geometry. The articles collected in this volume present new noncommutative geometry perspectives on classical topics of number theory and arithmetic such as modular forms, class field theory, the theory of reductive p-adic groups, Shimura varieties, the local L-factors of arithmetic varieties. They also show how arithmetic appears naturally in noncommutative geometry and in physics, in the residues of Feynman graphs, in the properties of noncommutative tori, and in the quantum Hall effect.




Rigid Local Systems


Book Description

Riemann introduced the concept of a "local system" on P1-{a finite set of points} nearly 140 years ago. His idea was to study nth order linear differential equations by studying the rank n local systems (of local holomorphic solutions) to which they gave rise. His first application was to study the classical Gauss hypergeometric function, which he did by studying rank-two local systems on P1- {0,1,infinity}. His investigation was successful, largely because any such (irreducible) local system is rigid in the sense that it is globally determined as soon as one knows separately each of its local monodromies. It became clear that luck played a role in Riemann's success: most local systems are not rigid. Yet many classical functions are solutions of differential equations whose local systems are rigid, including both of the standard nth order generalizations of the hypergeometric function, n F n-1's, and the Pochhammer hypergeometric functions. This book is devoted to constructing all (irreducible) rigid local systems on P1-{a finite set of points} and recognizing which collections of independently given local monodromies arise as the local monodromies of irreducible rigid local systems. Although the problems addressed here go back to Riemann, and seem to be problems in complex analysis, their solutions depend essentially on a great deal of very recent arithmetic algebraic geometry, including Grothendieck's etale cohomology theory, Deligne's proof of his far-reaching generalization of the original Weil Conjectures, the theory of perverse sheaves, and Laumon's work on the l-adic Fourier Transform.




Algebra, Arithmetic, and Geometry


Book Description

EMAlgebra, Arithmetic, and Geometry: In Honor of Yu. I. ManinEM consists of invited expository and research articles on new developments arising from Manin’s outstanding contributions to mathematics.




Algebraic Geometry 2


Book Description

Algebraic geometry is built upon two fundamental notions: schemes and sheaves. The theory of schemes was explained in Algebraic Geometry 1: From Algebraic Varieties to Schemes. In this volume, the author turns to the theory of sheaves and their cohomology. A sheaf is a way of keeping track of local information defined on a topological space, such as the local holomorphic functions on a complex manifold or the local sections of a vector bundle. To study schemes, it is useful to study the sheaves defined on them, especially the coherent and quasicoherent sheaves.




Rigid Local Systems


Book Description

Riemann introduced the concept of a "local system" on P1-{a finite set of points} nearly 140 years ago. His idea was to study nth order linear differential equations by studying the rank n local systems (of local holomorphic solutions) to which they gave rise. His first application was to study the classical Gauss hypergeometric function, which he did by studying rank-two local systems on P1- {0,1,infinity}. His investigation was successful, largely because any such (irreducible) local system is rigid in the sense that it is globally determined as soon as one knows separately each of its local monodromies. It became clear that luck played a role in Riemann's success: most local systems are not rigid. Yet many classical functions are solutions of differential equations whose local systems are rigid, including both of the standard nth order generalizations of the hypergeometric function, n F n-1's, and the Pochhammer hypergeometric functions. This book is devoted to constructing all (irreducible) rigid local systems on P1-{a finite set of points} and recognizing which collections of independently given local monodromies arise as the local monodromies of irreducible rigid local systems. Although the problems addressed here go back to Riemann, and seem to be problems in complex analysis, their solutions depend essentially on a great deal of very recent arithmetic algebraic geometry, including Grothendieck's etale cohomology theory, Deligne's proof of his far-reaching generalization of the original Weil Conjectures, the theory of perverse sheaves, and Laumon's work on the l-adic Fourier Transform.




Methods of Algebraic Geometry in Control Theory: Part I


Book Description

"An introduction to the ideas of algebraic geometry in the motivated context of system theory." Thus the author describes his textbook that has been specifically written to serve the needs of students of systems and control. Without sacrificing mathematical care, the author makes the basic ideas of algebraic geometry accessible to engineers and applied scientists. The emphasis is on constructive methods and clarity rather than abstraction. The student will find here a clear presentation with an applied flavor, of the core ideas in the algebra-geometric treatment of scalar linear system theory. The author introduces the four representations of a scalar linear system and establishes the major results of a similar theory for multivariable systems appearing in a succeeding volume (Part II: Multivariable Linear Systems and Projective Algebraic Geometry). Prerequisites are the basics of linear algebra, some simple notions from topology and the elementary properties of groups, rings, and fields, and a basic course in linear systems. Exercises are an integral part of the treatment and are used where relevant in the main body of the text. The present, softcover reprint is designed to make this classic textbook available to a wider audience. "This book is a concise development of affine algebraic geometry together with very explicit links to the applications...[and] should address a wide community of readers, among pure and applied mathematicians." —Monatshefte für Mathematik




Lectures on Algebraic Geometry II


Book Description

This second volume introduces the concept of shemes, reviews some commutative algebra and introduces projective schemes. The finiteness theorem for coherent sheaves is proved, here again the techniques of homological algebra and sheaf cohomology are needed. In the last two chapters, projective curves over an arbitrary ground field are discussed, the theory of Jacobians is developed, and the existence of the Picard scheme is proved. Finally, the author gives some outlook into further developments- for instance étale cohomology- and states some fundamental theorems.




Calabi-Yau Varieties: Arithmetic, Geometry and Physics


Book Description

This volume presents a lively introduction to the rapidly developing and vast research areas surrounding Calabi–Yau varieties and string theory. With its coverage of the various perspectives of a wide area of topics such as Hodge theory, Gross–Siebert program, moduli problems, toric approach, and arithmetic aspects, the book gives a comprehensive overview of the current streams of mathematical research in the area. The contributions in this book are based on lectures that took place during workshops with the following thematic titles: “Modular Forms Around String Theory,” “Enumerative Geometry and Calabi–Yau Varieties,” “Physics Around Mirror Symmetry,” “Hodge Theory in String Theory.” The book is ideal for graduate students and researchers learning about Calabi–Yau varieties as well as physics students and string theorists who wish to learn the mathematics behind these varieties.




The p-adic Simpson Correspondence and Hodge-Tate Local Systems


Book Description

This book delves into the p-adic Simpson correspondence, its construction, and development. Offering fresh and innovative perspectives on this important topic in algebraic geometry, the text serves a dual purpose: it describes an important tool in p-adic Hodge theory, which has recently attracted significant interest, and also provides a comprehensive resource for researchers. Unique among the books in the existing literature in this field, it combines theoretical advances, novel constructions, and connections to Hodge-Tate local systems. This exposition builds upon the foundation laid by Faltings, the collaborative efforts of the two authors with T. Tsuji, and contributions from other researchers. Faltings initiated in 2005 a p-adic analogue of the (complex) Simpson correspondence, whose construction has been taken up in several different ways. Following the approach they initiated with T. Tsuji, the authors develop new features of the p-adic Simpson correspondence, inspired by their construction of the relative Hodge-Tate spectral sequence. First, they address the connection to Hodge-Tate local systems. Then they establish the functoriality of the p-adic Simpson correspondence by proper direct image. Along the way, they expand the scope of their original construction. The book targets a specialist audience interested in the intricate world of p-adic Hodge theory and its applications, algebraic geometry and related areas. Graduate students can use it as a reference or for in-depth study. Mathematicians exploring connections between complex and p-adic geometry will also find it valuable.