Logic and Implication


Book Description

This monograph presents a general theory of weakly implicative logics, a family covering a vast number of non-classical logics studied in the literature, concentrating mainly on the abstract study of the relationship between logics and their algebraic semantics. It can also serve as an introduction to (abstract) algebraic logic, both propositional and first-order, with special attention paid to the role of implication, lattice and residuated connectives, and generalized disjunctions. Based on their recent work, the authors develop a powerful uniform framework for the study of non-classical logics. In a self-contained and didactic style, starting from very elementary notions, they build a general theory with a substantial number of abstract results. The theory is then applied to obtain numerous results for prominent families of logics and their algebraic counterparts, in particular for superintuitionistic, modal, substructural, fuzzy, and relevant logics. The book may be of interest to a wide audience, especially students and scholars in the fields of mathematics, philosophy, computer science, or related areas, looking for an introduction to a general theory of non-classical logics and their algebraic semantics.




The Semantics and Proof Theory of the Logic of Bunched Implications


Book Description

This is a monograph about logic. Specifically, it presents the mathe matical theory of the logic of bunched implications, BI: I consider Bl's proof theory, model theory and computation theory. However, the mono graph is also about informatics in a sense which I explain. Specifically, it is about mathematical models of resources and logics for reasoning about resources. I begin with an introduction which presents my (background) view of logic from the point of view of informatics, paying particular attention to three logical topics which have arisen from the development of logic within informatics: • Resources as a basis for semantics; • Proof-search as a basis for reasoning; and • The theory of representation of object-logics in a meta-logic. The ensuing development represents a logical theory which draws upon the mathematical, philosophical and computational aspects of logic. Part I presents the logical theory of propositional BI, together with a computational interpretation. Part II presents a corresponding devel opment for predicate BI. In both parts, I develop proof-, model- and type-theoretic analyses. I also provide semantically-motivated compu tational perspectives, so beginning a mathematical theory of resources. I have not included any analysis, beyond conjecture, of properties such as decidability, finite models, games or complexity. I prefer to leave these matters to other occasions, perhaps in broader contexts.




Discrete Mathematics


Book Description

This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.




SQL and Relational Theory


Book Description

SQL is full of difficulties and traps for the unwary. You can avoid them if you understand relational theory, but only if you know how to put the theory into practice. In this insightful book, author C.J. Date explains relational theory in depth, and demonstrates through numerous examples and exercises how you can apply it directly to your use of SQL. This second edition includes new material on recursive queries, “missing information” without nulls, new update operators, and topics such as aggregate operators, grouping and ungrouping, and view updating. If you have a modest-to-advanced background in SQL, you’ll learn how to deal with a host of common SQL dilemmas. Why is proper column naming so important? Nulls in your database are causing you to get wrong answers. Why? What can you do about it? Is it possible to write an SQL query to find employees who have never been in the same department for more than six months at a time? SQL supports “quantified comparisons,” but they’re better avoided. Why? How do you avoid them? Constraints are crucially important, but most SQL products don’t support them properly. What can you do to resolve this situation? Database theory and practice have evolved since the relational model was developed more than 40 years ago. SQL and Relational Theory draws on decades of research to present the most up-to-date treatment of SQL available. C.J. Date has a stature that is unique within the database industry. A prolific writer well known for the bestselling textbook An Introduction to Database Systems (Addison-Wesley), he has an exceptionally clear style when writing about complex principles and theory.




A Spiral Workbook for Discrete Mathematics


Book Description

A Spiral Workbook for Discrete Mathematics covers the standard topics in a sophomore-level course in discrete mathematics: logic, sets, proof techniques, basic number theory, functions,relations, and elementary combinatorics, with an emphasis on motivation. The text explains and claries the unwritten conventions in mathematics, and guides the students through a detailed discussion on how a proof is revised from its draft to a nal polished form. Hands-on exercises help students understand a concept soon after learning it. The text adopts a spiral approach: many topics are revisited multiple times, sometimes from a dierent perspective or at a higher level of complexity, in order to slowly develop the student's problem-solving and writing skills.




An Introduction to Formal Logic


Book Description

Formal logic provides us with a powerful set of techniques for criticizing some arguments and showing others to be valid. These techniques are relevant to all of us with an interest in being skilful and accurate reasoners. In this highly accessible book, Peter Smith presents a guide to the fundamental aims and basic elements of formal logic. He introduces the reader to the languages of propositional and predicate logic, and then develops formal systems for evaluating arguments translated into these languages, concentrating on the easily comprehensible 'tree' method. His discussion is richly illustrated with worked examples and exercises. A distinctive feature is that, alongside the formal work, there is illuminating philosophical commentary. This book will make an ideal text for a first logic course, and will provide a firm basis for further work in formal and philosophical logic.




Trends in Logic


Book Description

In 1953, exactly 50 years ago to this day, the first volume of Studia Logica appeared under the auspices of The Philosophical Committee of The Polish Academy of Sciences. Now, five decades later the present volume is dedicated to a celebration of this 50th Anniversary of Studia Logica. The volume features a series of papers by distinguished scholars reflecting both the aim and scope of this journal for symbolic logic.




Logic as Algebra


Book Description

Here is an introduction to modern logic that differs from others by treating logic from an algebraic perspective. What this means is that notions and results from logic become much easier to understand when seen from a familiar standpoint of algebra. The presentation, written in the engaging and provocative style that is the hallmark of Paul Halmos, from whose course the book is taken, is aimed at a broad audience, students, teachers and amateurs in mathematics, philosophy, computer science, linguistics and engineering; they all have to get to grips with logic at some stage. All that is needed.




A Concise Introduction to Logic


Book Description




Mathematical Logic


Book Description

Contents include an elementary but thorough overview of mathematical logic of 1st order; formal number theory; surveys of the work by Church, Turing, and others, including Gödel's completeness theorem, Gentzen's theorem, more.