Logic Design for Array-Based Circuits


Book Description

This book will show you how to approach the design covering everything from the circuit specification to the final design acceptance, including what support you can expect, sizing, timing analysis, power and packaging, various simulations, design verification, and design submission.




Logic Design for Array-Based Circuits


Book Description

This book will show you how to approach the design covering everything from the circuit specification to the final design acceptance, including what support you can expect, sizing, timing analysis, power and packaging, various simulations, design verification, and design submission.




VLSI Testing


Book Description

Hurst, an editor at the Microelectronics Journal, analyzes common problems that electronics engineers and circuit designers encounter while testing integrated circuits and the systems in which they are used, and explains a variety of solutions available for overcoming them in both digital and mixed circuits. Among his topics are faults in digital circuits, generating a digital test pattern, signatures and self-tests, structured design for testability, testing structured digital circuits and microprocessors, and financial aspects of testing. The self- contained reference is also suitable as a textbook in a formal course on the subject. Annotation copyrighted by Book News, Inc., Portland, OR




Development and Investigation of Novel Logic-in-Memory and Nonvolatile Logic Circuits Utilizing Hafnium Oxide-Based Ferroelectric Field-Effect Transistors


Book Description

Not only conventional computer architectures, such as the von-Neumann architecture with its inevitable von-Neumann bottleneck, but likewise the emerging field of edge computing require to substantially decrease the spatial separation of logic and memory units to overcome power and latency shortages. The integration of logic operations into memory units (Logic-in-Memory), as well as memory elements into logic circuits (Nonvolatile Logic), promises to fulfill this request by combining high-speed with low-power operation. Ferroelectric field-effect transistors (FeFETs) based on hafnium oxide prove to be auspicious candidates for the memory elements in applications of that kind, as those nonvolatile memory elements are CMOS-compatible and likewise scalable. This work presents implementations that merge logic and memory by exploiting the natural capability of the FeFET to combine logic functionality (transistor) and memory ability (nonvolatility).




Digital Logic Design


Book Description

New, updated and expanded topics in the fourth edition include: EBCDIC, Grey code, practical applications of flip-flops, linear and shaft encoders, memory elements and FPGAs. The section on fault-finding has been expanded. A new chapter is dedicated to the interface between digital components and analog voltages. - A highly accessible, comprehensive and fully up to date digital systems text - A well known and respected text now revamped for current courses - Part of the Newnes suite of texts for HND/1st year modules




Nanowire Transistors


Book Description

From quantum mechanical concepts to practical circuit applications, this book presents a self-contained and up-to-date account of the physics and technology of nanowire semiconductor devices. It includes a unified account of the critical ideas central to low-dimensional physics and transistor physics which equips readers with a common framework and language to accelerate scientific and technological developments across the two fields. Detailed descriptions of novel quantum mechanical effects such as quantum current oscillations, the metal-to-semiconductor transition and the transition from classical transistor to single-electron transistor operation are described in detail, in addition to real-world applications in the fields of nanoelectronics, biomedical sensing techniques, and advanced semiconductor research. Including numerous illustrations to help readers understand these phenomena, this is an essential resource for researchers and professional engineers working on semiconductor devices and materials in academia and industry.




Memristor-Based Nanoelectronic Computing Circuits and Architectures


Book Description

This book considers the design and development of nanoelectronic computing circuits, systems and architectures focusing particularly on memristors, which represent one of today’s latest technology breakthroughs in nanoelectronics. The book studies, explores, and addresses the related challenges and proposes solutions for the smooth transition from conventional circuit technologies to emerging computing memristive nanotechnologies. Its content spans from fundamental device modeling to emerging storage system architectures and novel circuit design methodologies, targeting advanced non-conventional analog/digital massively parallel computational structures. Several new results on memristor modeling, memristive interconnections, logic circuit design, memory circuit architectures, computer arithmetic systems, simulation software tools, and applications of memristors in computing are presented. High-density memristive data storage combined with memristive circuit-design paradigms and computational tools applied to solve NP-hard artificial intelligence problems, as well as memristive arithmetic-logic units, certainly pave the way for a very promising memristive era in future electronic systems. Furthermore, these graph-based NP-hard problems are solved on memristive networks, and coupled with Cellular Automata (CA)-inspired computational schemes that enable computation within memory. All chapters are written in an accessible manner and are lavishly illustrated. The book constitutes an informative cornerstone for young scientists and a comprehensive reference to the experienced reader, hoping to stimulate further research on memristive devices, circuits, and systems.




The VLSI Handbook


Book Description

Over the years, the fundamentals of VLSI technology have evolved to include a wide range of topics and a broad range of practices. To encompass such a vast amount of knowledge, The VLSI Handbook focuses on the key concepts, models, and equations that enable the electrical engineer to analyze, design, and predict the behavior of very large-scale integrated circuits. It provides the most up-to-date information on IC technology you can find. Using frequent examples, the Handbook stresses the fundamental theory behind professional applications. Focusing not only on the traditional design methods, it contains all relevant sources of information and tools to assist you in performing your job. This includes software, databases, standards, seminars, conferences and more. The VLSI Handbook answers all your needs in one comprehensive volume at a level that will enlighten and refresh the knowledge of experienced engineers and educate the novice. This one-source reference keeps you current on new techniques and procedures and serves as a review for standard practice. It will be your first choice when looking for a solution.




Fundamentals of Layout Design for Electronic Circuits


Book Description

This book covers the fundamental knowledge of layout design from the ground up, addressing both physical design, as generally applied to digital circuits, and analog layout. Such knowledge provides the critical awareness and insights a layout designer must possess to convert a structural description produced during circuit design into the physical layout used for IC/PCB fabrication. The book introduces the technological know-how to transform silicon into functional devices, to understand the technology for which a layout is targeted (Chap. 2). Using this core technology knowledge as the foundation, subsequent chapters delve deeper into specific constraints and aspects of physical design, such as interfaces, design rules and libraries (Chap. 3), design flows and models (Chap. 4), design steps (Chap. 5), analog design specifics (Chap. 6), and finally reliability measures (Chap. 7). Besides serving as a textbook for engineering students, this book is a foundational reference for today’s circuit designers. For Slides and Other Information: https://www.ifte.de/books/pd/index.html




COMPUTER ORGANIZATION AND DESIGN


Book Description

The merging of computer and communication technologies with consumer electronics has opened up new vistas for a wide variety of designs of computing systems for diverse application areas. This revised and updated third edition on Computer Organization and Design strives to make the students keep pace with the changes, both in technology and pedagogy in the fast growing discipline of computer science and engineering. The basic principles of how the intended behaviour of complex functions can be realized with the interconnected network of digital blocks are explained in an easy-to-understand style. WHAT IS NEW TO THIS EDITION : Includes a new chapter on Computer Networking, Internet, and Wireless Networks. Introduces topics such as wireless input-output devices, RAID technology built around disk arrays, USB, SCSI, etc. Key Features Provides a large number of design problems and their solutions in each chapter. Presents state-of-the-art memory technology which includes EEPROM and Flash Memory apart from Main Storage, Cache, Virtual Memory, Associative Memory, Magnetic Bubble, and Charged Couple Device. Shows how the basic data types and data structures are supported in hardware. Besides students, practising engineers should find reading this design-oriented text both useful and rewarding.