A Computational Logic


Book Description

ACM Monograph Series: A Computational Logic focuses on the use of induction in proving theorems, including the use of lemmas and axioms, free variables, equalities, and generalization. The publication first elaborates on a sketch of the theory and two simple examples, a precise definition of the theory, and correctness of a tautology-checker. Topics include mechanical proofs, informal development, formal specification of the problem, well-founded relations, natural numbers, and literal atoms. The book then examines the use of type information to simplify formulas, use of axioms and lemmas as rewrite rules, and the use of definitions. Topics include nonrecursive functions, computing values, free variables in hypothesis, infinite backwards chaining, infinite looping, computing type sets, and type prescriptions. The manuscript takes a look at rewriting terms and simplifying clauses, eliminating destructors and irrelevance, using equalities, and generalization. Concerns include reasons for eliminating isolated hypotheses, precise statement of the generalization heuristic, restricting generalizations, precise use of equalities, and multiple destructors and infinite looping. The publication is a vital source of data for researchers interested in computational logic.




Logic, Meaning and Computation


Book Description

This volume began as a remembrance of Alonzo Church while he was still with us and is now finally complete. It contains papers by many well-known scholars, most of whom have been directly influenced by Church's own work. Often the emphasis is on foundational issues in logic, mathematics, computation, and philosophy - as was the case with Church's contributions, now universally recognized as having been of profound fundamental significance in those areas. The volume will be of interest to logicians, computer scientists, philosophers, and linguists. The contributions concern classical first-order logic, higher-order logic, non-classical theories of implication, set theories with universal sets, the logical and semantical paradoxes, the lambda-calculus, especially as it is used in computation, philosophical issues about meaning and ontology in the abstract sciences and in natural language, and much else. The material will be accessible to specialists in these areas and to advanced graduate students in the respective fields.




The Cultural Logic of Computation


Book Description

Advocates of computers make sweeping claims for their inherently transformative power: new and different from previous technologies, they are sure to resolve many of our existing social problems, and perhaps even to cause a positive political revolution. In The Cultural Logic of Computation, David Golumbia, who worked as a software designer for more than ten years, confronts this orthodoxy, arguing instead that computers are cultural “all the way down”—that there is no part of the apparent technological transformation that is not shaped by historical and cultural processes, or that escapes existing cultural politics. From the perspective of transnational corporations and governments, computers benefit existing power much more fully than they provide means to distribute or contest it. Despite this, our thinking about computers has developed into a nearly invisible ideology Golumbia dubs “computationalism”—an ideology that informs our thinking not just about computers, but about economic and social trends as sweeping as globalization. Driven by a programmer’s knowledge of computers as well as by a deep engagement with contemporary literary and cultural studies and poststructuralist theory, The Cultural Logic of Computation provides a needed corrective to the uncritical enthusiasm for computers common today in many parts of our culture.




Three Views of Logic


Book Description

Demonstrating the different roles that logic plays in the disciplines of computer science, mathematics, and philosophy, this concise undergraduate textbook covers select topics from three different areas of logic: proof theory, computability theory, and nonclassical logic. The book balances accessibility, breadth, and rigor, and is designed so that its materials will fit into a single semester. Its distinctive presentation of traditional logic material will enhance readers' capabilities and mathematical maturity. The proof theory portion presents classical propositional logic and first-order logic using a computer-oriented (resolution) formal system. Linear resolution and its connection to the programming language Prolog are also treated. The computability component offers a machine model and mathematical model for computation, proves the equivalence of the two approaches, and includes famous decision problems unsolvable by an algorithm. The section on nonclassical logic discusses the shortcomings of classical logic in its treatment of implication and an alternate approach that improves upon it: Anderson and Belnap's relevance logic. Applications are included in each section. The material on a four-valued semantics for relevance logic is presented in textbook form for the first time. Aimed at upper-level undergraduates of moderate analytical background, Three Views of Logic will be useful in a variety of classroom settings. Gives an exceptionally broad view of logic Treats traditional logic in a modern format Presents relevance logic with applications Provides an ideal text for a variety of one-semester upper-level undergraduate courses




Sets, Logic, Computation


Book Description

A textbook on the semantics, proof theory, and metatheory of first-order logic. It covers naive set theory, first-order logic, sequent calculus and natural deduction, the completeness, compactness, and Löwenheim-Skolem theorems, Turing machines, and the undecidability of the halting problem and of first-order logic. It is based on the Open Logic project, and available for free download at slc.openlogicproject.org.




Logic and Computation


Book Description

This book is concerned with techniques for formal theorem-proving, with particular reference to Cambridge LCF (Logic for Computable Functions). Cambridge LCF is a computer program for reasoning about computation. It combines the methods of mathematical logic with domain theory, the basis of the denotational approach to specifying the meaning of program statements. Cambridge LCF is based on an earlier theorem-proving system, Edinburgh LCF, which introduced a design that gives the user flexibility to use and extend the system. A goal of this book is to explain the design, which has been adopted in several other systems. The book consists of two parts. Part I outlines the mathematical preliminaries, elementary logic and domain theory, and explains them at an intuitive level, giving reference to more advanced reading; Part II provides sufficient detail to serve as a reference manual for Cambridge LCF. It will also be a useful guide for implementors of other programs based on the LCF approach.




A Concise Introduction to Mathematical Logic


Book Description

Mathematical logic developed into a broad discipline with many applications in mathematics, informatics, linguistics and philosophy. This text introduces the fundamentals of this field, and this new edition has been thoroughly expanded and revised.




Mathematical Logic for Computer Science


Book Description

This is a mathematics textbook with theorems and proofs. The choice of topics has been guided by the needs of computer science students. The method of semantic tableaux provides an elegant way to teach logic that is both theoretically sound and yet sufficiently elementary for undergraduates. In order to provide a balanced treatment of logic, tableaux are related to deductive proof systems. The book presents various logical systems and contains exercises. Still further, Prolog source code is available on an accompanying Web site. The author is an Associate Professor at the Department of Science Teaching, Weizmann Institute of Science.




Language in Action


Book Description

Language in Action demonstrates the viability of mathematical research into the foundations of categorial grammar, a topic at the border between logic and linguistics. Since its initial publication it has become the classic work in the foundations of categorial grammar. A new introduction to this paperback edition updates the open research problems and records relevant results through pointers to the literature. Van Benthem presents the categorial processing of syntax and semantics as a central component in a more general dynamic logic of information flow, in tune with computational developments in artificial intelligence and cognitive science. Using the paradigm of categorial grammar, he describes the substructural logics driving the dynamics of natural language syntax and semantics. This is a general type-theoretic approach that lends itself easily to proof-theoretic and semantic studies in tandem with standard logic. The emphasis is on a broad landscape of substructural categorial logics and their proof-theoretical and semantic peculiarities. This provides a systematic theory for natural language understanding, admitting of significant mathematical results. Moreover, the theory makes possible dynamic interpretations that view natural languages as programming formalisms for various cognitive activities.




Foundations of Computation


Book Description

Foundations of Computation is a free textbook for a one-semester course in theoretical computer science. It has been used for several years in a course at Hobart and William Smith Colleges. The course has no prerequisites other than introductory computer programming. The first half of the course covers material on logic, sets, and functions that would often be taught in a course in discrete mathematics. The second part covers material on automata, formal languages and grammar that would ordinarily be encountered in an upper level course in theoretical computer science.