Logic's Lost Genius


Book Description

Gerhard Gentzen (1909-1945) is the founder of modern structural proof theory. His lasting methods, rules, and structures resulted not only in the technical mathematical discipline called ''proof theory'' but also in verification programs that are essential in computer science. The appearance, clarity, and elegance of Gentzen's work on natural deduction, the sequent calculus, and ordinal proof theory continue to be impressive even today. The present book gives the first comprehensive, detailed, accurate scientific biography expounding the life and work of Gerhard Gentzen, one of our greatest logicians, until his arrest and death in Prague in 1945. Particular emphasis in the book is put on the conditions of scientific research, in this case mathematical logic, in National Socialist Germany, the ideological fight for ''German logic'', and their mutual protagonists. Numerous hitherto unpublished sources, family documents, archival material, interviews, and letters, as well as Gentzen's lectures for the mathematical public, make this book an indispensable source of information on this important mathematician, his work, and his time. The volume is completed by two deep substantial essays by Jan von Plato and Craig Smorynski on Gentzen's proof theory; its relation to the ideas of Hilbert, Brouwer, Weyl, and Godel; and its development up to the present day. Smorynski explains the Hilbert program in more than the usual slogan form and shows why consistency is important. Von Plato shows in detail the benefits of Gentzen's program. This important book is a self-contained starting point for any work on Gentzen and his logic. The book is accessible to a wide audience with different backgrounds and is suitable for general readers, researchers, students, and teachers. Information for our distributors: Co-published with the London Mathematical Society beginning with Volume 4. Members of the LMS may order directly from the AMS at the AMS member price. The LMS is registered with the Charity Commissioners.




Elements of Logical Reasoning


Book Description

Some of our earliest experiences of the conclusive force of an argument come from school mathematics: faced with a mathematical proof, we cannot deny the conclusion once the premises have been accepted. Behind such arguments lies a more general pattern of 'demonstrative arguments' that is studied in the science of logic. Logical reasoning is applied at all levels, from everyday life to advanced sciences, and a remarkable level of complexity is achieved in everyday logical reasoning, even if the principles behind it remain intuitive. Jan von Plato provides an accessible but rigorous introduction to an important aspect of contemporary logic: its deductive machinery. He shows that when the forms of logical reasoning are analysed, it turns out that a limited set of first principles can represent any logical argument. His book will be valuable for students of logic, mathematics and computer science.




Hiroakira Ono on Substructural Logics


Book Description

This volume is dedicated to Hiroakira Ono life’s work on substructural logics. Chapters, written by well-established academics, cover topics related to universal algebra, algebraic logic and the Full Lambek calculus; the book includes a short biography about Hiroakira Ono. The book starts with detailed surveys on universal algebra, abstract algebraic logic, topological dualities, and connections to computer science. It further contains specialised contributions on connections to formal languages (recognizability in residuated lattices and connections to the finite embedding property), covering systems for modal substructural logics, results on the existence and disjunction properties and finally a study of conservativity of expansions. This book will be primarily of interest to researchers working in algebraic and non-classical logic.




The Great Formal Machinery Works


Book Description

The information age owes its existence to a little-known but crucial development, the theoretical study of logic and the foundations of mathematics. The Great Formal Machinery Works draws on original sources and rare archival materials to trace the history of the theories of deduction and computation that laid the logical foundations for the digital revolution. Jan von Plato examines the contributions of figures such as Aristotle; the nineteenth-century German polymath Hermann Grassmann; George Boole, whose Boolean logic would prove essential to programming languages and computing; Ernst Schröder, best known for his work on algebraic logic; and Giuseppe Peano, cofounder of mathematical logic. Von Plato shows how the idea of a formal proof in mathematics emerged gradually in the second half of the nineteenth century, hand in hand with the notion of a formal process of computation. A turning point was reached by 1930, when Kurt Gödel conceived his celebrated incompleteness theorems. They were an enormous boost to the study of formal languages and computability, which were brought to perfection by the end of the 1930s with precise theories of formal languages and formal deduction and parallel theories of algorithmic computability. Von Plato describes how the first theoretical ideas of a computer soon emerged in the work of Alan Turing in 1936 and John von Neumann some years later. Shedding new light on this crucial chapter in the history of science, The Great Formal Machinery Works is essential reading for students and researchers in logic, mathematics, and computer science.




The ((All)) “Heaven”


Book Description

The All: Who Is Who? Who Am I? Who Are You? is a creative writing of subconscious fact in higher states of consciousness, through which Merhebi presents his redefinition of the philosophy of feeling and understanding of the universe. This is an ideal gift to the one who has everything and a treasure to the one who has nothing. In over one hundred chapters, he shares a very important world and entertains our minds and souls. Merhebi emerges as a thinker-feeler, doodler, humorist, lover, and soul handler, and above all, he provokes your mind. He expresses his feelings and ideas in a variety of ways poetically, theoretically, and mathematically but always challenges the readers feelings and beliefs on politics, religion, philosophy, personal self-sufficiency, trade, love, discrimination, parenthood, domination, relationships, time and space, and the structure of the universe. His self-professed aim for this book is to generate a theory of the geometric forms of the invisible common sense logic nothing to be truth. He proposes that as humans of the day, we believe in what is beyond our knowledge capacity, and we function by need. He sees the challenge as one of bringing what we feel in line with what we know, harmoniously accommodating our conscious knowledge with the needs of our subconscious feelings.




The Victorian Cult of Shakespeare


Book Description

How and why did Victorian culture make Shakespeare into a literary deity and his work into a secular Bible?




Gentzen's Centenary


Book Description

Gerhard Gentzen has been described as logic’s lost genius, whom Gödel called a better logician than himself. This work comprises articles by leading proof theorists, attesting to Gentzen’s enduring legacy to mathematical logic and beyond. The contributions range from philosophical reflections and re-evaluations of Gentzen’s original consistency proofs to the most recent developments in proof theory. Gentzen founded modern proof theory. His sequent calculus and natural deduction system beautifully explain the deep symmetries of logic. They underlie modern developments in computer science such as automated theorem proving and type theory.




Elements of Logics


Book Description




Paul Lorenzen -- Mathematician and Logician


Book Description

This open access book examines the many contributions of Paul Lorenzen, an outstanding philosopher from the latter half of the 20th century. It features papers focused on integrating Lorenzen's original approach into the history of logic and mathematics. The papers also explore how practitioners can implement Lorenzen’s systematical ideas in today’s debates on proof-theoretic semantics, databank management, and stochastics. Coverage details key contributions of Lorenzen to constructive mathematics, Lorenzen’s work on lattice-groups and divisibility theory, and modern set theory and Lorenzen’s critique of actual infinity. The contributors also look at the main problem of Grundlagenforschung and Lorenzen’s consistency proof and Hilbert’s larger program. In addition, the papers offer a constructive examination of a Russell-style Ramified Type Theory and a way out of the circularity puzzle within the operative justification of logic and mathematics. Paul Lorenzen's name is associated with the Erlangen School of Methodical Constructivism, of which the approach in linguistic philosophy and philosophy of science determined philosophical discussions especially in Germany in the 1960s and 1970s. This volume features 10 papers from a meeting that took place at the University of Konstanz.




Musical Digest


Book Description