Cytochromes c


Book Description

Cytochromes c are haemoproteins which carry out electron transfer in a wide variety of biological systems, necessitating different kinds of cytochrome c to fulfill different biological roles. The evolutionary relationship between cytochromes c and their host organisms are described, as well as their structural, spectroscopic and redox properties, including both electron-transfer rates and redox potentials. The treatment is aimed at the non-specialist so that both the techniques described and their application to cytochromes c can be understood. All classes of cytochrome c are dealt with to provide a comprehensive account of the field. No other text provides such a broad survey. Similar to the earlier volume "Cytochromes c: Biological Aspects" which deals with the classification, biosynthesis and biological role of cytochromes c, the present book is aimed at research workers and advanced students.




Metal Sites in Proteins and Models


Book Description

Biological chemistry is a major frontier of inorganic chemistry. Three special volumes devoted to Metal Sites in Proteins and Models address the questions: how unusual ("entatic") are metal sites in metalloproteins and metalloenzymes compared to those in small coordination complexes? and if they are special, how do polypeptide chains and co-factors control this? The chapters deal with iron, with metal centres acting as Lewis acids, metals in phosphate enzymes, with vanadium, and with the wide variety of transition metal ions which act as redox centres. They illustrate in particular how the combined armoury of genetics and structure determination at the molecular level are providing unprecedented new tools for molecular engineering.




Natural Product Biosynthesis


Book Description

This textbook describes the types of natural products, the biosynthetic pathways that enable the production of these molecules, and an update on the discovery of novel products in the post-genomic era.




Monooxygenase, Peroxidase and Peroxygenase Properties and Mechanisms of Cytochrome P450


Book Description

This book describes in 13 chapters mechanisms of P450 used to monooxygenate substrates via the NAD(P)H/O2 pathway using its peroxidase and peroxygenase functions. P450 also utilizes peroxides, peracids, periodate and iodosobenzene to oxygenate substrates via the shunt pathway. Also described are mechanisms used in the oxidation of pharmaceuticals by CYP3A4; acyl- carbon cleavage by CYP17A1, CYP19A1 and CYP51A1; metabolism of tetrabromodiphenyl ethers and bile acids by CYP2B6 and CYP3A4; metabolism of ω-6 and ω-3 polyunsaturated fatty acids; H2O2-mediated peroxygenation of substrates using substrate misrecognition; P450 oxidative reactions using electrochemical methods; electron transfer to P450 by redox proteins; hydroxylation of 1,8-cineole by P450cin; and peroxygenation by unspecific peroxygenases using H2O2. The topics covered are relevant to P450 researchers, professors and students from a variety of disciplines ranging from pharmacology, toxicology and microbiology to chemistry.




Mitochondria and Anaerobic Energy Metabolism in Eukaryotes


Book Description

Mitochondria are sometimes called the powerhouses of eukaryotic cells, because mitochondria are the site of ATP synthesis in the cell. ATP is the universal energy currency, it provides the power that runs all other life processes. Humans need oxygen to survive because of ATP synthesis in mitochondria. The sugars from our diet are converted to carbon dioxide in mitochondria in a process that requires oxygen. Just like a fire needs oxygen to burn, our mitochondria need oxygen to make ATP. From textbooks and popular literature one can easily get the impression that all mitochondria require oxygen. But that is not the case. There are many groups of organismsm known that make ATP in mitochondria without the help of oxygen. They have preserved biochemical relicts from the early evolution of eukaryotic cells, which took place during times in Earth history when there was hardly any oxygen avaiable, certainly not enough to breathe. How the anaerobic forms of mitochondria work, in which organisms they occur, and how the eukaryotic anaerobes that possess them fit into the larger picture of rising atmospheric oxygen during Earth history are the topic of this book.




Heme Peroxidases


Book Description

Heme peroxidases are widely distributed in biological systems and are involved in a wide range of processes essential for life. This book provides a comprehensive single source of information on the various aspects of heme peroxidase structure, function and mechanism of action. Chapters written and edited by worldwide experts span a range of heme peroxidases from plants, yeast, bacteria and mammals. Discussed functions of peroxidases range from cell wall synthesis, synthesis of prostaglandins, role in drug suppression of tuberculosis, and antibacterial activity. Included is a discussion of peroxidases that also act as catalases and oxygenases. Heme Peroxidases serves as an essential text for those working in industry and academia in biochemistry and metallobiology.




Neutron Crystallography in Structural Biology


Book Description

Neutron Crystallography in Structural Biology, Volume 634, the latest volume in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Chapters in this updated release include Fundamentals of neutron crystallography in structural biology, Large crystal growth for neutron protein crystallography, Prospects for membrane protein crystals in NMX, IMAGINE: The neutron protein crystallography beamline at the high flux isotope reactor, The macromolecular neutron diffractometer at the spallation neutron source, Current status and near future plan of neutron protein crystallography at J-PARC, Neutron macromolecular crystallography at the European spallation source, and much more.




Biological Inorganic Chemistry


Book Description

Part A.: Overviews of biological inorganic chemistry : 1. Bioinorganic chemistry and the biogeochemical cycles -- 2. Metal ions and proteins: binding, stability, and folding -- 3. Special cofactors and metal clusters -- 4. Transport and storage of metal ions in biology -- 5. Biominerals and biomineralization -- 6. Metals in medicine. -- Part B.: Metal ion containing biological systems : 1. Metal ion transport and storage -- 2. Hydrolytic chemistry -- 3. Electron transfer, respiration, and photosynthesis -- 4. Oxygen metabolism -- 5. Hydrogen, carbon, and sulfur metabolism -- 6. Metalloenzymes with radical intermediates -- 7. Metal ion receptors and signaling. -- Cell biology, biochemistry, and evolution: Tutorial I. -- Fundamentals of coordination chemistry: Tutorial II.




Reactive Species Detection in Biology


Book Description

Reactive Species Detection in Biology: From Fluorescence to Electron Paramagnetic Resonance Spectroscopy discusses the reactive oxygen species that have been implicated in the pathogenesis of various diseases, presenting theories, chemistries, methodologies, and various applications for the detection of reactive species in biological systems, both in-vitro and in-vivo. Techniques covered include fluorescence, high performance chromatography, mass spectrometry, immunochemistry, and electron paramagnetic resonance spectroscopy. Probe design and development are also reviewed in order to advance new approaches in radical detection through synthesis, computations, or experimental applications. - Reviews all current advances in radical detection - Emphasizes chemical structures and reaction schemes fundamental to radical detection and identification - Describes the uses, advantages, and disadvantages of various probe designs - Examines new approaches to radical probe development