Low-Dimensional Magnetism


Book Description

Low-dimensional magnetism physics involves the search for new magnetic compounds and improving their characteristics to meet the needs of innovative technologies. A comprehensive overview of key materials, their formulation data and characteristics are detailed by the author. Key selling features: Explores dominant mechanisms of magnetic interaction to determine the parameters of exchange interactions in new magnetic materials. Describes how magnetism and superconductivity not only compete, but also "help" each other. Details characteristics of key materials in the magnetic subsystem. Results of several internationally renowned research groups are included and cited. Suitable for a wide range of readers in physics, materials science, and chemistry interested in the problems of the structure of matter.




Fundamentals of Low Dimensional Magnets


Book Description

A low-dimensional magnet is a key to the next generation of electronic devices. In some respects, low-dimensional magnets refer to nanomagnets (nanostructured magnets) or single-molecule magnets (molecular nanomagnets). They also include the group of magnetic nanoparticles, which have been widely used in biomedicine, technology, industries, and environmental remediation. Low-dimensional magnetic materials can be used effectively in the future in powerful computers (hard drives, magnetic random-access memory, ultra-low power consumption switches, etc.). The properties of these materials largely depend on the doping level, phase, defects, and morphology. This book covers various nanomagnets and magnetic materials. The basic concepts, various synthetic approaches, characterizations, and mathematical understanding of nanomaterials are provided. Some fundamental applications of 1D, 2D, and 3D materials are covered. This book provides the fundamentals of low-dimensional magnets along with synthesis, theories, structure-property relations, and applications of ferromagnetic nanomaterials. This book broadens our fundamental understanding of ferromagnetism and mechanisms for realization and advancement in devices with improved energy efficiency and high storage capacity.




Emerging Applications of Low Dimensional Magnets


Book Description

Low-dimensional magnetic materials find their wide applications in many areas, including spintronics, memory devices, catalysis, biomedical, sensors, electromagnetic shielding, aerospace, and energy. This book provides a comprehensive discussion on magnetic nanomaterials for emerging applications. Fundamentals along with applications of low-dimensional magnetic materials in spintronics, catalysis, memory, biomedicals, toxic waste removal, aerospace, telecommunications, batteries, supercapacitors, flexible electronics, and many more are covered in detail to provide a full spectrum of their advanced applications. This book offers fresh aspects of nanomagnetic materials and innovative directions to scientists, researchers, and students. It will be of particular interest to materials scientists, engineers, physicists, chemists, and researchers in electronic and spintronic industries, and is suitable as a textbook for undergraduate and graduate studies.




Quantum Magnetism


Book Description

Closing a gap in the literature, this volume is intended both as an introductory text at postgraduate level and as a modern, comprehensive reference for researchers in the field. Provides a full working description of the main fundamental tools in the theorists toolbox which have proven themselves on the field of quantum magnetism in recent years. Concludes by focusing on the most important cuurent materials form an experimental viewpoint, thus linking back to the initial theoretical concepts.




Low-Dimensional Systems: Theory, Preparation, and Some Applications


Book Description

This volume contains papers presented at the NATO Advanced Research Workshop (ARW) Dynamic Interactions in Quantum Dot Systems held at Hotel Atrium in Puszczykowo, near Poznan, Poland, May 16-19,2002. The term low-dimensional systems, which is used in the title of this volume, refers to those systems which contain at least one dimension that is intermediate between those characteristic ofatoms/molecules and those ofthe bulk material. Depending on how many dimensions lay within this range, we generally speak of quantum wells, quantum wires, and quantum dots. As such an intermediate state, some properties of low-dimensional systems are very different to those of their molecular and bulk counterparts. These properties generally include optical, electronic, and magnetic properties, and all these are partially covered in this book. The main goal of the workshop was to discuss the actual state of the art in the broad area ofnanotechnology. The initial focus was on the innovative synthesis of nanomaterials and their properties such as: quantum size effects, superparamagnetism, or field emission. These topics lead us into the various field based interactions including plasmon- magnetic spin- and exciton coupling. The newer, more sophisticated methods for characterization of nanomaterials were discussed, as well as the methods for possible industrial applications. In general, chemists and physicists, as well as experts on both theory and experiments on nanosized regime structures were brought together, to discuss the general phenomena underlying their fields ofinterest from different points ofview.




Frontiers in Magnetism of Reduced Dimension Systems


Book Description

Frontiers in Magnetism of Reduced Dimension Systems presents a definitive statement of our current knowledge and the state of the art in a field that has yet to achieve maturity, even though there are a number of potential applications of thin magnetic films and multilayers, such as magnetic sensors, data storage/retrieval media, actuators, etc. The book is organized into 13 chapters, each including a lecture and contributed papers on a similar subject. Five chapters deal with theoretical descriptions of electron transport phenomena, relaxation processes, nonlinear paramagnetic interactions, phase transitions and macroscopic quantum effects in magnetic films and particles. The description of different characterization techniques occupies an important place in the book. Separate chapters are dedicated to magnetic resonances (FMR, SWR, NMR), magneto-optical spectroscopy, controlling chaos, magnetoelastic phenomena and magnetic resonance force microscopy. A further chapter gives a detailed review, spread over a number of papers, of materials in current use in information storage devices.




Magnetic Properties of Layered Transition Metal Compounds


Book Description

In the last two decades low-dimensional (low-d) physics has matured into a major branch of science. Quite generally we may define a system with restricted dimensionality d as an object that is infinite only in one or two spatial directions (d = 1 and 2). Such a definition comprises isolated single chains or layers, but also fibres and thin layers (films) of varying but finite thickness. Clearly, a multitude of physical phenomena, notably in solid state physics, fall into these categories. As examples, we may mention: • Magnetic chains or layers (thin-film technology). • Metallic films (homogeneous or heterogeneous, crystalline, amorphous or microcristalline, etc.). • I-d or 2-d conductors and superconductors. • Intercalated systems. • 2-d electron gases (electrons on helium, semiconductor interfaces). • Surface layer problems (2-d melting of monolayers of noble gases on a substrate, surface problems in general). • Superfluid films of ~He or 'He. • Polymer physics. • Organic and inorganic chain conductors, superionic conductors. • I-d or 2-d molecular crystals and liquid crystals. • I-d or 2-d ferro- and antiferro electrics.




The Physics Of Low Dimensional Materials


Book Description

The purpose of this book is two fold. First to explain the properties of low dimensional solids such as electronic, vibrational and magnetic structure in terms of simple models. These are used to account for the properties of three dimensional materials providing an elementary introduction to the physics of low dimensional materials. The second objective is to discuss the properties of newer low dimensional materials not made of carbon. These are now the subject of research and describe various phenomena in them such magnetism and superconductivity.




Magnetism and Structure in Systems of Reduced Dimension


Book Description

This volume contains the papers presented at the NATO Advanced Research Workshop on "Magnetism and Structure in Systems of Reduced Dimension", held at l'Institut d'Etudes Scientifiques de Cargese - U.M.S. - C.N.R.S. - Universite de Corte Universite de Nice Sophia - Antipolis during June 15-19, 1992. The ordering of papers in the volume reflects the sequence of papers presented at the workshop. The aim was not to segregate the papers into rigidly defmed areas but to group the papers into small clusters, each cluster having a common theme. In this way the parallel, rather than serial, development of areas such as preparation of films, magnetic and structural characterization was highlighted. Indeed the success of the field depends on such parallel development and is assisted by workshops of this nature and the international collaborations which they foster. The organizers and participants of the NATO workshop express their thanks to Mme. Marie-France Hanseier and the staff at l'Institut d'Etudes Scientifiques de Cargese U.M.S. - C.N.R.S. - Universite de Corte - Universite de Nice Sophia - Antipolis for making the workshop and local arrangements a memorable success. Warm thanks are also expressed to Varadachari Sadagopan and Pascal Stefanou for their encouragement and help in making the workshop a reality. We are also grateful to Kristl Hathaway, Larry Cooper and Gary Prinz for advice in developing the workshop program.