Low Energy Electrons in the Mars Plasma Environment


Book Description

The ionosphere of Mars is rather poorly understood. The only direct measurements were performed by the Viking 1 and 2 landers in 1976, both of which carried a Retarding Potential Analyzer. The RPA was designed to measure ion properties during the descent, although electron fluxes were estimated from changes in the ion currents. Using these derived low-energy electron fluxes, Mantas and Hanson studied the photoelectron and the solar wind electron interactions with the atmosphere and ionosphere of Mars. Unanswered questions remain regarding the origin of the low-energy electron fluxes in the vicinity of the Mars plasma boundary. Crider, in an analysis of Mars Global Surveyor Magnetometer/Electron Reflectometer measurements, has attributed the formation of the magnetic pile-up boundary to electron impact ionization of exospheric neutral species by solar wind electrons. However, the role of photoelectrons escaping from the lower ionosphere was not determined. In the proposed work, we will examine the role of solar wind and ionospheric photoelectrons in producing ionization in the upper ionosphere of Mars. Low-energy (




The Mars Plasma Environment


Book Description

This book contains the latest results on the plasma environment of Mars and its interaction with the solar wind. These results include mapping of the plasma environment with the instruments on Mars Express and Mars Global Surveyor, the latest numerical simulations, and theoretical studies. This comprehensive examination of the Mars environment also sets the stage for the interpretation of the Venus Express measurements.




Low-Energy Electrons


Book Description

Low-energy electrons are ubiquitous in nature and play an important role in natural phenomena as well as many potential and current industrial processes. Authored by 16 active researchers, this book describes the fundamental characteristics of low-energy electron–molecule interactions and their role in different fields of science and technology, including plasma processing, nanotechnology, and health care, as well as astro- and atmospheric physics and chemistry. The book is packed with illustrative examples, from both fundamental and application sides, features about 130 figures, and lists over 800 references. It may serve as an advanced graduate-level study course material where selected chapters can be used either individually or in combination as a basis to highlight and study specific aspects of low-energy electron–molecule interactions. It is also directed at researchers in the fields of plasma physics, nanotechnology, and radiation damage to biologically relevant material (such as in cancer therapy), especially those with an interest in high-energy-radiation-induced processes, from both an experimental and a theoretical point of view.




The Atmosphere and Climate of Mars


Book Description

Humanity has long been fascinated by the planet Mars. Was its climate ever conducive to life? What is the atmosphere like today and why did it change so dramatically over time? Eleven spacecraft have successfully flown to Mars since the Viking mission of the 1970s and early 1980s. These orbiters, landers and rovers have generated vast amounts of data that now span a Martian decade (roughly eighteen years). This new volume brings together the many new ideas about the atmosphere and climate system that have emerged, including the complex interplay of the volatile and dust cycles, the atmosphere-surface interactions that connect them over time, and the diversity of the planet's environment and its complex history. Including tutorials and explanations of complicated ideas, students, researchers and non-specialists alike are able to use this resource to gain a thorough and up-to-date understanding of this most Earth-like of planetary neighbours.







Aeronomy of Mars


Book Description

“Mangalyaan was launched on November 5, 2013, to Mars by Indian Space Research Organization (ISRO). On October 2, 2022, ISRO declared that Mangalyaan had lost communications with Earth. Mars Color Camera (MCC) on-board Mangalyaan has taken thousands pictures of Mars. A full disk of Mars image observed by Viking is shown on the cover page of this book. Mars is covered by the dust as observed by Mangalyaan (from Arya et al., 2015). This book presents the atmospheric and ionospheric results obtained from all missions to Mars. It also covers various atmospheric and ionospheric models of Mars. Broadly speaking, the planet’s atmosphere can be divided into two regions: lower and upper. These two regions can be coupled due to the propagation of energy from the lower to the upper atmosphere. The first-ever book on the aeronomy of Mars, this work is intended to help students and researchers familiarize themselves with the field of aeronomy. In addition, it helps planetary probe designers, engineers, and other users in the scientific community, e.g., planetary geologists and geophysicists”.







Exploring Venus as a Terrestrial Planet


Book Description

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 176. With the search for extra-solar planets in full gear, it has become essential to gain a more detailed understanding of the evolution of the other earth-like planets in our own solar system. Space missions to Venus, including the Soviet Veneras, Pioneer Venus, and Magellan, provided a wealth of information about this planet' enigmatic surface and atmosphere, but left many fundamental questions about its origin and evolution unanswered. This book discusses how the study of Venus will aid our understanding of terrestrial and extra-solar planet evolution, with particular reference to surface and interior processes, atmospheric circulation, chemistry, and aeronomy. Incorporating results from the recent European Venus Express mission, Exploring Venus as a Terrestrial Planet examines the open questions and relates them to Earth and other terrestrial planets. The goal is to stimulate thinking about those broader issues as the new Venus data arrive.







Photochemistry of the Atmospheres of Mars and Venus


Book Description

Spacecraft study of the Solar system is one of humanity's most outstanding achievements. Thanks to this study, our present knowledge of properties of and conditions on the planets exceeds many-fold that of 20 years ago: planets have been rediscovered. This is especially the case for planetary atmospheres, whose properties were for the most part either not at all or only erroneously known. Much research has been invested in the study of the atmospheres of Mars and Venus, and their chemical composition and photochemistry are basic problems in these studies. In the present publication I have tried to summarize all findings in this field. The English version of the book includes new data in the field from the last 3 years since the book was published in Russian. I wish to thank U. von Zahn, who initiated my talks with Springer-Verlag and acted as technical editor. December 2, 1985 V. A. KRASNOPOLSKY Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 Chemical Composition and Structure of the Martian Atmosphere 4 1. 1 Carbon Dioxide and Atmospheric Pressure . . . . . . . . . . . . . . . . . . . 4 1. 2 CO and O Mixing Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 1. 3 Ozone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1. 4 Water Vapor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1. 5 Composition of the Upper Atmosphere as Determined from Airglow Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1. 6 Mass Spectrometric Measurements of the Atmospheric Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1. 7 Ionospheric Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1. 8 Temperature Profile of the Lower Atmosphere. . . . . . . . . . . . . . . . 36 1. 9 Temperature of the Upper Atmosphere . . . . . . . . . . . . . . . . . . . . . . 40 1. 10 Eddy Diffusion Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2 Photochemistry of the Martian Atmosphere . . . . . . . . . . . . . . . . . .