Low Energy Nuclear Dynamics


Book Description

"The proceedings of the conference include recent results of experimental and theoretical research on the following topics: reaction dynamics, fusion-fission phenomena, neutron physics, deformed shells, nuclear spectroscopy, and exotic nuclei."--Publisher's website




Nuclear Reactions for Astrophysics


Book Description

Describes how the processes in stars which produce the chemical elements for planets and life may be reproduced in laboratories.







Decoherence


Book Description

This detailed, accessible introduction to the field of quantum decoherence reviews the basics and then explains the essential consequences of the phenomenon for our understanding of the world. The discussion includes, among other things: How the classical world of our experience can emerge from quantum mechanics; the implications of decoherence for various interpretations of quantum mechanics; recent experiments confirming the puzzling consequences of the quantum superposition principle and making decoherence processes directly observable.




Nuclear Physics


Book Description

Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade.




Low-energy Nuclear Reactions Sourcebook


Book Description

This book is a summary of selected experimental and theoretical research performed over the last 19 years that gives profound and unambiguous evidence for low energy nuclear reaction (LENR), historically known as cold fusion. In 1989, the subject was announced with great fanfare, to the chagrin of many people in the science community. However, the significant claim of its discoverers, Martin Fleischmann and Stanley Pons, excess heat without harmful neutron emissions or strong gamma radiation, involving electrochemical cells using heavy water and palladium, has held strong. In recent years, LENR, within the field of condensed matter nuclear science, has begun to attract widespread attention and is regarded as a potential alternative and renewable energy source to confront climate change and energy scarcity. The aim of the research is to collect experimental findings for LENR in order to present reasonable explanations and a conclusive theoretical and practical working model. The goal of the field is directed toward the fabrication of LENR devices with unique commercial potential demonstrating an alternative energy source that does not produce greenhouse gases, long-lived radiation or strong prompt radiation. The idea of LENR has led to endless discussions about the kinetic impossibility of intense nuclear reactions with high coulomb barrier potential. However, recent theoretical work may soon shed light on this mystery. Understanding this process is one of the most challenging and perhaps important issues in the scientific world. This book includes previously unpublished studies, new and controversial theories to approach LENR with access to new sources and experimental results. The book offers insight into this controversial subject and will help readers re-evaluate their perspective on LENR for a possible alternative energy source.




An Assessment of U.S.-Based Electron-Ion Collider Science


Book Description

Understanding of protons and neutrons, or "nucleons"â€"the building blocks of atomic nucleiâ€"has advanced dramatically, both theoretically and experimentally, in the past half century. A central goal of modern nuclear physics is to understand the structure of the proton and neutron directly from the dynamics of their quarks and gluons governed by the theory of their interactions, quantum chromodynamics (QCD), and how nuclear interactions between protons and neutrons emerge from these dynamics. With deeper understanding of the quark-gluon structure of matter, scientists are poised to reach a deeper picture of these building blocks, and atomic nuclei themselves, as collective many-body systems with new emergent behavior. The development of a U.S. domestic electron-ion collider (EIC) facility has the potential to answer questions that are central to completing an understanding of atoms and integral to the agenda of nuclear physics today. This study assesses the merits and significance of the science that could be addressed by an EIC, and its importance to nuclear physics in particular and to the physical sciences in general. It evaluates the significance of the science that would be enabled by the construction of an EIC, its benefits to U.S. leadership in nuclear physics, and the benefits to other fields of science of a U.S.-based EIC.




Dynamics of the Standard Model


Book Description

This 2014 edition, now OA, provides a detailed and practical account of the Standard Model of particle physics.




Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment


Book Description

Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment presents the latest computational fluid dynamic technologies. It includes an evaluation of safety systems for reactors using CFD and their design, the modeling of Severe Accident Phenomena Using CFD, Model Development for Two-phase Flows, and Applications for Sodium and Molten Salt Reactor Designs. Editors Joshi and Nayak have an invaluable wealth of experience that enables them to comment on the development of CFD models, the technologies currently in practice, and the future of CFD in nuclear reactors. Readers will find a thematic discussion on each aspect of CFD applications for the design and safety assessment of Gen II to Gen IV reactor concepts that will help them develop cost reduction strategies for nuclear power plants.




Principles Of Fusion Energy: An Introduction To Fusion Energy For Students Of Science And Engineering


Book Description

This textbook accommodates the two divergent developmental paths which have become solidly established in the field of fusion energy: the process of sequential tokamak development toward a prototype and the need for a more fundamental and integrative research approach before costly design choices are made.Emphasis is placed on the development of physically coherent and mathematically clear characterizations of the scientific and technological foundations of fusion energy which are specifically suitable for a first course on the subject. Of interest, therefore, are selected aspects of nuclear physics, electromagnetics, plasma physics, reaction dynamics, materials science, and engineering systems, all brought together to form an integrated perspective on nuclear fusion and its practical utilization.The book identifies several distinct themes. The first is concerned with preliminary and introductory topics which relate to the basic and relevant physical processes associated with nuclear fusion. Then, the authors undertake an analysis of magnetically confined, inertially confined, and low-temperature fusion energy concepts. Subsequently, they introduce the important blanket domains surrounding the fusion core and discuss synergetic fusion-fission systems. Finally, they consider selected conceptual and technological subjects germane to the continuing development of fusion energy systems.