Low Magnetic Fields in Anisotropic Superconductors


Book Description

Superconductors have been known about since the turn ofthe century. Recently there has been a renewed interest with the discovery of the new, high-Tc materials since 1986[1]. These compounds become superconducting at much warmer temperatures than any pre viously known. In fact, many of tthem superconduct at temperatures above the boiling point of liquid nitrogen, making the observation of the transition both accessible and inexpensive. It was obvious immediately that these materials could have a tremendous technological impact, or lead to further materials with even higher transitions. For this reason there has been an intense effort by scientists in both academia and industry to study these materials. The scientificand industrial communitieshope to learn what makes these materials work. For, learning how these materials work not only increases mankind's overall knowledge of his world, but could make some person or company quite successful if the information were used and developed correctly.




The Superconducting State in Magnetic Fields


Book Description

This volume is an exciting collection of short review articles written by leading international experts on the superconducting state in magnetic fields, a rapidly developing area. The philosophy of the book is to emphasize the importance of having experimental and theoretical works side by side. Every effort has been made to match each experimental article with a corresponding theoretical article. The selection of materials includes special topics, new effects and new trends concerning superconductors in low and high magnetic fields. The special topics and new trends include quantum and classical melting of the vortex lattice, new vortex lattice symmetries, vortex core states, nonlinear Meissner effect, symmetry of the order parameter in high-temperature superconductors, and superconductors in high magnetic fields. The book is targeted at a broad audience, including graduate students, postdocs and other researchers active or interested in this field.




Introduction to Unconventional Superconductivity


Book Description

Unconventional superconductivity (or superconductivity with a nontrivial Cooper pairing) is believed to exist in many heavy-fermion materials as well as in high temperature superconductors, and is a subject of great theoretical and experimental interest. The remarkable progress achieved in this field has not been reflected in published monographs and textbooks, and there is a gap between current research and the standard education of solid state physicists in the theory of superconductivity. This book is intended to meet this information need and includes the authors' original results.




Low Magnetic Fields in Anisotropic Superconductors


Book Description

Superconductors have been known about since the turn ofthe century. Recently there has been a renewed interest with the discovery of the new, high-Tc materials since 1986[1]. These compounds become superconducting at much warmer temperatures than any pre viously known. In fact, many of tthem superconduct at temperatures above the boiling point of liquid nitrogen, making the observation of the transition both accessible and inexpensive. It was obvious immediately that these materials could have a tremendous technological impact, or lead to further materials with even higher transitions. For this reason there has been an intense effort by scientists in both academia and industry to study these materials. The scientificand industrial communitieshope to learn what makes these materials work. For, learning how these materials work not only increases mankind's overall knowledge of his world, but could make some person or company quite successful if the information were used and developed correctly.




Advances in Superconductivity VIII


Book Description

Since the discovery of superconductivity with trans1tton temperatures above 77 K, concentrated research activities toward the exploration of practical applica tions of these materials have been carried out. Currently, a remarkable improve ment in superconducting properties has been achieved due to the fine optimization of fabrication processes, and this has attracted industrial interest for future applications. In the case of NdBa Cu 0 materials, a new pinning mecha 2 3 7 nism was found which enhances the critical current under applied magnetic fields. In single crystals of these materials, oxygen control results in an increase in the growth rate. The metalorganic chemical vapor deposition (MOCVD) film quality has been improved by using a new liquid raw material. Simultaneously, real demands from the viewpoint of the market start to be a motivation force, es pecially in electronics application where some products are already being sold. At the same time, interesting physical properlies have been obtained from a new superconducting single crystal which has a layered perovskite structure without copper. In addition, various precision measurement techniques have confirmed the d-wave mechanism and the existence of intrinsicJosephson junctions in single crystals. These new phenomena challenge the existing theoretical models but also open the way for new applications. These significant areas of progress in materials science have led high-Tc super conductivity research into the next phase of activity, while fundamental research continues to be very important. I sincerely hope that this volume will give further impetus to this development.










Frontiers in Superconductivity Research


Book Description

Superconductivity is the ability of certain materials to conduct electrical current with no resistance and extremely low losses. High temperature superconductors, such as La2-xSrxCuOx (Tc=40K) and YBa2Cu3O7-x (Tc=90K), were discovered in 1987 and have been actively studied since. In spite of an intense, worldwide, research effort during this time, a complete understanding of the copper oxide (cuprate) materials is still lacking. Many fundamental questions are unanswered, particularly the mechanism by which high-Tc superconductivity occurs. More broadly, the cuprates are in a class of solids with strong electron-electron interactions. An understanding of such 'strongly correlated' solids is perhaps the major unsolved problem of condensed matter physics with over ten thousand researchers working on this topic. High-Tc superconductors also have significant potential for applications in technologies ranging from electric power generation and transmission to digital electronics. This ability to carry large amounts of current can be applied to electric power devices such as motors and generators, and to electricity transmission in power lines. For example, superconductors can carry as much as 100 times the amount of electricity of ordinary copper or aluminum wires of the same size. Many universities, research institutes and companies are working to develop high-Tc superconductivity applications and considerable progress has been made. This volume brings together leading research in this growth field.




Quasi-one-dimensional Organic Superconductors


Book Description

The book includes a thorough description of a wide range of physical properties of organic superconductors of reduced dimensionality. The authors start with an overview of the field followed by a background discussion and selected experimental topics. A critical discussion of theoretical proposals is presented under the constraints of experimental observations and exciting possibilities for the symmetry of the order parameter are presented, including the cases of inhomogeneous superconducting states and triplet superconductivity. The possible origins of Cooper pairing are explored and tests to detect experimentally the pairing symmetry are described in detail. The book ends with a discussion of important open questions, where the search for their answers will keep the field alive for the next decade.




Proceedings of the Yamada Conference XVIII on Superconductivity in Highly Correlated Fermion Systems


Book Description

Superconductivity in Highly Correlated Fermion Systems documents the proceedings of the Yamada Conference XVIII on Superconductivity in Highly Correlated Fermion Systems held in Sendai, Japan, from August 31 to September 3, 1987. This book compiles selected papers on the experimental and theoretical advances in the study of superconductivity. The topics include the superconductivity and magnetism in heavy-electron materials, magneto-resistance of heavy-fermion compounds, and magnetic fluctuations and order in exotic superconductors. The fabrication and properties of thin superconducting oxide films, bipolaron models of superconductors, superconducting properties of superlattices, and flux quantization on quasi-crystalline networks are also covered. This publication is recommended for physicists and students researching on the superconductivity in highly correlated fermion systems.