Low Power Design with High-Level Power Estimation and Power-Aware Synthesis


Book Description

This book presents novel research techniques, algorithms, methodologies and experimental results for high level power estimation and power aware high-level synthesis. Readers will learn to apply such techniques to enable design flows resulting in shorter time to market and successful low power ASIC/FPGA design.







High-Level Power Analysis and Optimization


Book Description

High-Level Power Analysis and Optimization presents a comprehensive description of power analysis and optimization techniques at the higher (architecture and behavior) levels of the design hierarchy, which are often the levels that yield the most power savings. This book describes power estimation and optimization techniques for use during high-level (behavioral synthesis), as well as for designs expressed at the register-transfer or architecture level. High-Level Power Analysis and Optimization surveys the state-of-the-art research on the following topics: power estimation/macromodeling techniques for architecture-level designs, high-level power management techniques, and high-level synthesis optimizations for low power. High-Level Power Analysis and Optimization will be very useful reading for students, researchers, designers, design methodology developers, and EDA tool developers who are interested in low-power VLSI design or high-level design methodologies.




Low Power Design Methodologies


Book Description

Low Power Design Methodologies presents the first in-depth coverage of all the layers of the design hierarchy, ranging from the technology, circuit, logic and architectural levels, up to the system layer. The book gives insight into the mechanisms of power dissipation in digital circuits and presents state of the art approaches to power reduction. Finally, it introduces a global view of low power design methodologies and how these are being captured in the latest design automation environments. The individual chapters are written by the leading researchers in the area, drawn from both industry and academia. Extensive references are included at the end of each chapter. Audience: A broad introduction for anyone interested in low power design. Can also be used as a text book for an advanced graduate class. A starting point for any aspiring researcher.




Low Power Design in Deep Submicron Electronics


Book Description

Low Power Design in Deep Submicron Electronics deals with the different aspects of low power design for deep submicron electronics at all levels of abstraction from system level to circuit level and technology. Its objective is to guide industrial and academic engineers and researchers in the selection of methods, technologies and tools and to provide a baseline for further developments. Furthermore the book has been written to serve as a textbook for postgraduate student courses. In order to achieve both goals, it is structured into different chapters each of which addresses a different phase of the design, a particular level of abstraction, a unique design style or technology. These design-related chapters are amended by motivations in Chapter 2, which presents visions both of future low power applications and technology advancements, and by some advanced case studies in Chapter 9. From the Foreword: `... This global nature of design for low power was well understood by Wolfgang Nebel and Jean Mermet when organizing the NATO workshop which is the origin of the book. They invited the best experts in the field to cover all aspects of low power design. As a result the chapters in this book are covering deep-submicron CMOS digital system design for low power in a systematic way from process technology all the way up to software design and embedded software systems. Low Power Design in Deep Submicron Electronics is an excellent guide for the practicing engineer, the researcher and the student interested in this crucial aspect of actual CMOS design. It contains about a thousand references to all aspects of the recent five years of feverish activity in this exciting aspect of design.' Hugo de Man Professor, K.U. Leuven, Belgium Senior Research Fellow, IMEC, Belgium




Low-Power Design and Power-Aware Verification


Book Description

Until now, there has been a lack of a complete knowledge base to fully comprehend Low power (LP) design and power aware (PA) verification techniques and methodologies and deploy them all together in a real design verification and implementation project. This book is a first approach to establishing a comprehensive PA knowledge base. LP design, PA verification, and Unified Power Format (UPF) or IEEE-1801 power format standards are no longer special features. These technologies and methodologies are now part of industry-standard design, verification, and implementation flows (DVIF). Almost every chip design today incorporates some kind of low power technique either through power management on chip, by dividing the design into different voltage areas and controlling the voltages, through PA dynamic and PA static verification, or their combination. The entire LP design and PA verification process involves thousands of techniques, tools, and methodologies, employed from the r egister transfer level (RTL) of design abstraction down to the synthesis or place-and-route levels of physical design. These techniques, tools, and methodologies are evolving everyday through the progression of design-verification complexity and more intelligent ways of handling that complexity by engineers, researchers, and corporate engineering policy makers.




Power Aware Design Methodologies


Book Description

Presents various aspects of power-aware design methodologies, covering the design hierarchy from technology, circuit logic, and architectural levels up to the system layer. This book includes discussion of techniques and methodologies for improving the power efficiency of CMOS circuits, systems on chip, microelectronic systems, and so on.




Low Power Design Essentials


Book Description

This book contains all the topics of importance to the low power designer. It first lays the foundation and then goes on to detail the design process. The book also discusses such special topics as power management and modal design, ultra low power, and low power design methodology and flows. In addition, coverage includes projections of the future and case studies.







Low-Power Design and Power-Aware Verification


Book Description

Until now, there has been a lack of a complete knowledge base to fully comprehend Low power (LP) design and power aware (PA) verification techniques and methodologies and deploy them all together in a real design verification and implementation project. This book is a first approach to establishing a comprehensive PA knowledge base. LP design, PA verification, and Unified Power Format (UPF) or IEEE-1801 power format standards are no longer special features. These technologies and methodologies are now part of industry-standard design, verification, and implementation flows (DVIF). Almost every chip design today incorporates some kind of low power technique either through power management on chip, by dividing the design into different voltage areas and controlling the voltages, through PA dynamic and PA static verification, or their combination. The entire LP design and PA verification process involves thousands of techniques, tools, and methodologies, employed from the r egister transfer level (RTL) of design abstraction down to the synthesis or place-and-route levels of physical design. These techniques, tools, and methodologies are evolving everyday through the progression of design-verification complexity and more intelligent ways of handling that complexity by engineers, researchers, and corporate engineering policy makers.