National Union Catalog


Book Description

Includes entries for maps and atlases










Stockpile Report to the Congress


Book Description







Silicate Glasses and Melts


Book Description

Silicate Glasses and Melts, Second Edition describes the structure-property-composition relationships for silicate glasses and melts from a geological and industrial perspective. Updated sections include (i) characterization of silicate melt and COHN fluid structure (with and without dissolved silicate components) with pressure, temperature, and redox conditions and responses of structural variables to chemical composition, (ii) determination of solubility and solution mechanisms of COHN volatiles in silicate melts and minerals and of solubility and solution mechanisms of silicate components in COHN fluids, and (iii) effects of very high pressure on structure and properties of melts and glasses. This new book is an essential resource for researchers in a number of fields, including geology, geophysics, geoscience, volcanology, material science, glass science, petrology and mineralogy. - Brings together multidisciplinary research scattered across the scientific literature into one reference, with a focus on silicate melts and their application to natural systems - Emphasizes linking melt properties to melt structure - Includes a discussion of the pros and cons of the use of glass as a proxy for melt structure and properties - Written by highly regarded experts in the field who, among other honors, were the 2006 recipients of the prestigious G.W. Morey award of the American Ceramic Society




Geochemistry of oilfield waters


Book Description

Geochemistry of oilfield waters




Nanostructured Catalysts


Book Description

With the recent advent of nanotechnology, research and development in the area of nanostructured materials has gained unprecedented prominence. Novel materials with potentially exciting new applications are being discovered at a much higher rate than ever before. Innovative tools to fabricate, manipulate, characterize and evaluate such materials are being developed and expanded. To keep pace with this extremely rapid growth, it is necessary to take a breath from time to time, to critically assess the current knowledge and provide thoughts for future developments. This book represents one of these moments, as a number of prominent scientists in nanostructured materials join forces to provide insightful reviews of their areas of expertise, thus offering an overall picture of the state-- the art of the field. Nanostructured materials designate an increasing number of materials with designed shapes, surfaces, structures, pore systems, etc. Nanostructured materials with modified surfaces include those whose surfaces have been altered via such techniques as grafting and tethering of organic or organometallic species, or through various deposition procedures including electro, electroless and vapor deposition, or simple adsorption. These materials find important applications in catalysis, separation and environmental remediation. Materials with patterned surfaces, which are essential for the optoelectronics industry, constitute another important class of surface-modified nanostructured materials. Other materials are considered nanostructured because of their composition and internal organization.