Low-Power Digital VLSI Design


Book Description

Low-Power Digital VLSI Design: Circuits and Systems addresses both process technologies and device modeling. Power dissipation in CMOS circuits, several practical circuit examples, and low-power techniques are discussed. Low-voltage issues for digital CMOS and BiCMOS circuits are emphasized. The book also provides an extensive study of advanced CMOS subsystem design. A low-power design methodology is presented with various power minimization techniques at the circuit, logic, architecture and algorithm levels. Features: Low-voltage CMOS device modeling, technology files, design rules Switching activity concept, low-power guidelines to engineering practice Pass-transistor logic families Power dissipation of I/O circuits Multi- and low-VT CMOS logic, static power reduction circuit techniques State of the art design of low-voltage BiCMOS and CMOS circuits Low-power techniques in CMOS SRAMS and DRAMS Low-power on-chip voltage down converter design Numerous advanced CMOS subsystems (e.g. adders, multipliers, data path, memories, regular structures, phase-locked loops) with several design options trading power, delay and area Low-power design methodology, power estimation techniques Power reduction techniques at the logic, architecture and algorithm levels More than 190 circuits explained at the transistor level.







CMOS/BiCMOS ULSI


Book Description

For upper level and graduate level Electrical and Computer Engineering courses in Integrated Circuit Design as well as professional circuit designers, engineers and researchers working in portable wireless communications hardware. This book presents the fundamentals of Complementary Metal Oxide Semiconductor (CMOS) and Bipolar compatible Complementary Metal Oxide Semiconductor (BiCMOS) technology, as well as the latest technological advances in the field. It discusses the concepts and techniques of new integrated circuit design for building high performance and low power circuits and systems for current and future very-large-scale-integration (VLSI) and giga-scale-integration (GSI) applications. CMOS/BiCMOS ULSI: Low-Voltage Low-Power is an essential resource for every professional moving toward lower voltage, lower power, and higher performance VLSI circuits and subsystems design.










Advanced Low-Power Digital Circuit Techniques


Book Description

Advanced Low-Power Digital Circuit Techniques presents several novel high performance digital circuit designs that emphasize low-power and low-voltage operation. These circuits represent a wide range of circuits that are used in state-of-the-art VLSI systems and hence serve as good examples for low-power design. Each chapter contains a brief introduction that serves as a quick background and gives the motivation behind the design. Each chapter also ends with a summary that briefly explains the contributions contained therein. This makes the book very readable. The reader can skim through the chapters very quickly to get a feel for the design problems presented in the book and the solutions proposed by the authors. Examples of circuits used in systems where low-power is important from reliability and portability points of view (such as general-purpose and DSP processors) are presented in Chapters 2, 3 and 4. Chapters 5 and 7 give examples of circuits used in systems where reliability and more system integration are the main driving forces behind lowering the power consumption. Chapter 6 gives an example of a general purpose high-performance low-power circuit design. Advanced Low-Power Digital Circuit Techniques is a real designer's book. It investigates alternative circuit styles, as well as architectural alternatives, and gives quantitative results for comparison in realistic technologies. Several of the circuits presented have been fabricated so that simulations can be checked. The circuits covered are the most important building blocks for many designs, so the text will be of direct use to designers. MOS designs are covered, as well as BiCMOS, and there are several novel circuits.




Low Power Digital CMOS Design


Book Description

Power consumption has become a major design consideration for battery-operated, portable systems as well as high-performance, desktop systems. Strict limitations on power dissipation must be met by the designer while still meeting ever higher computational requirements. A comprehensive approach is thus required at all levels of system design, ranging from algorithms and architectures to the logic styles and the underlying technology. Potentially one of the most important techniques involves combining architecture optimization with voltage scaling, allowing a trade-off between silicon area and low-power operation. Architectural optimization enables supply voltages of the order of 1 V using standard CMOS technology. Several techniques can also be used to minimize the switched capacitance, including representation, optimizing signal correlations, minimizing spurious transitions, optimizing sequencing of operations, activity-driven power down, etc. The high- efficiency of DC-DC converter circuitry required for efficient, low-voltage and low-current level operation is described by Stratakos, Sullivan and Sanders. The application of various low-power techniques to a chip set for multimedia applications shows that orders-of-magnitude reduction in power consumption is possible. The book also features an analysis by Professor Meindl of the fundamental limits of power consumption achievable at all levels of the design hierarchy. Svensson, of ISI, describes emerging adiabatic switching techniques that can break the CV2f barrier and reduce the energy per computation at a fixed voltage. Srivastava, of AT&T, presents the application of aggressive shut-down techniques to microprocessor applications.




Low-Voltage/Low-Power Integrated Circuits and Systems


Book Description

Electrical Engineering Low-Voltage/Low-Power Integrated Circuits and Systems Low-Voltage Mixed-Signal Circuits Leading experts in the field present this collection of original contributions as a practical approach to low-power analog and digital circuit theory and design, illustrated with important applications and examples. Low-Voltage/Low-Power Integrated Circuits and Systems features comprehensive coverage of the latest techniques for the design, modeling, and characterization of low-power analog and digital circuits. Low-Voltage/Low-Power Integrated Circuits and Systems will help you improve your understanding of the trade-offs between analog and digital circuits and systems. It is an invaluable resource for enhancing your designs. This book is intended for senior and graduate students. It is also intended as a key reference for designers in the semiconductor and communication industries. Highlighted applications include: Low-voltage analog filters Low-power multiplierless YUV to RGB based on human vision perception Micropower systems for implantable defibrillators and pacemakers Neuromorphic systems Low-power design in telecom circuits




Low-Voltage CMOS Log Companding Analog Design


Book Description

Low-Voltage CMOS Log Companding Analog Design presents in detail state-of-the-art analog circuit techniques for the very low-voltage and low-power design of systems-on-chip in CMOS technologies. The proposed strategy is mainly based on two bases: the Instantaneous Log Companding Theory, and the MOSFET operating in the subthreshold region. The former allows inner compression of the voltage dynamic-range for very low-voltage operation, while the latter is compatible with CMOS technologies and suitable for low-power circuits. The required background on the specific modeling of the MOS transistor for Companding is supplied at the beginning. Following this general approach, a complete set of CMOS basic building blocks is proposed and analyzed for a wide variety of analog signal processing. In particular, the covered areas include: amplification and AGC, arbitrary filtering, PTAT generation, and pulse duration modulation (PDM). For each topic, several case studies are considered to illustrate the design methodology. Also, integrated examples in 1.2um and 0.35um CMOS technologies are reported to verify the good agreement between design equations and experimental data. The resulting analog circuit topologies exhibit very low-voltage (i.e. 1V) and low-power (few tenths of uA) capabilities. Apart from these specific design examples, a real industrial application in the field of hearing aids is also presented as the main demonstrator of all the proposed basic building blocks. This system-on-chip exhibits true 1V operation, high flexibility through digital programmability and very low-power consumption (about 300uA including the Class-D amplifier). As a result, the reported ASIC can meet the specifications of a complete family of common hearing aid models. In conclusion, this book is addressed to both industry ASIC designers who can apply its contents to the synthesis of very low-power systems-on-chip in standard CMOS technologies, as well as to the teachers of modern circuit design in electronic engineering.




Low-Power VLSI Circuits and Systems


Book Description

The book provides a comprehensive coverage of different aspects of low power circuit synthesis at various levels of design hierarchy; starting from the layout level to the system level. For a seamless understanding of the subject, basics of MOS circuits has been introduced at transistor, gate and circuit level; followed by various low-power design methodologies, such as supply voltage scaling, switched capacitance minimization techniques and leakage power minimization approaches. The content of this book will prove useful to students, researchers, as well as practicing engineers.