Compact Low-Voltage and High-Speed CMOS, BiCMOS and Bipolar Operational Amplifiers


Book Description

Compact Low-Voltage and High-Speed CMOS, BiCMOS and Bipolar Operational Amplifiers discusses the design of integrated operational amplifiers that approach the limits of low supply voltage or very high bandwidth. The resulting realizations span the whole field of applications from micro-power CMOS VLSI amplifiers to 1-GHz bipolar amplifiers. The book presents efficient circuit topologies in order to combine high performance with simple solutions. In total twelve amplifier realizations are discussed. Two bipolar amplifiers are discussed, a 1-GHz operational amplifier and an amplifier with a high ratio between the maximum output current and the quiescent current. Five amplifiers have been designed in CMOS technology, extremely compact circuits that can operate on supply voltages down to one gate-source voltage and two saturation voltages which equals about 1.4 V and, ultimate-low-voltage amplifiers that can operate on supply voltages down to one gate-source voltage and one saturation voltage which amounts to about 1.2 V. In BiCMOS technology five amplifiers have been designed. The first two amplifiers are based on a compact topology. Two other amplifiers are designed to operate on low supply voltages down to 1.3 V. The final amplifier has a unity-gain frequency of 200 MHz and can operate down to 2.5 V. Compact Low-Voltage and High-Speed CMOS, BiCMOS and Bipolar Operational Amplifiers is intended for the professional analog designer. Also, it is suitable as a text book for advanced courses in amplifier design.




Op Amps for Everyone


Book Description

The operational amplifier ("op amp") is the most versatile and widely used type of analog IC, used in audio and voltage amplifiers, signal conditioners, signal converters, oscillators, and analog computing systems. Almost every electronic device uses at least one op amp. This book is Texas Instruments' complete professional-level tutorial and reference to operational amplifier theory and applications. Among the topics covered are basic op amp physics (including reviews of current and voltage division, Thevenin's theorem, and transistor models), idealized op amp operation and configuration, feedback theory and methods, single and dual supply operation, understanding op amp parameters, minimizing noise in op amp circuits, and practical applications such as instrumentation amplifiers, signal conditioning, oscillators, active filters, load and level conversions, and analog computing. There is also extensive coverage of circuit construction techniques, including circuit board design, grounding, input and output isolation, using decoupling capacitors, and frequency characteristics of passive components. The material in this book is applicable to all op amp ICs from all manufacturers, not just TI. Unlike textbook treatments of op amp theory that tend to focus on idealized op amp models and configuration, this title uses idealized models only when necessary to explain op amp theory. The bulk of this book is on real-world op amps and their applications; considerations such as thermal effects, circuit noise, circuit buffering, selection of appropriate op amps for a given application, and unexpected effects in passive components are all discussed in detail. *Published in conjunction with Texas Instruments *A single volume, professional-level guide to op amp theory and applications *Covers circuit board layout techniques for manufacturing op amp circuits.




Design of Low-Voltage, Low-Power Operational Amplifier Cells


Book Description

Design of Low-Voltage, Low-Power CMOS Operational Amplifier Cells describes the theory and design of the circuit elements that are required to realize a low-voltage, low-power operational amplifier. These elements include constant-gm rail-to-rail input stages, class-AB rail-to-rail output stages and frequency compensation methods. Several examples of each of these circuit elements are investigated. Furthermore, the book illustrates several silicon realizations, giving their measurement results. The text focuses on compact low-voltage low-power operational amplifiers with good performance. Six simple high-performance class-AB amplifiers are realized using a very compact topology making them particularly suitable for use as VLSI library cells. All of the designs can use a supply voltage as low as 3V. One of the amplifier designs dissipates only 50μW with a unity gain frequency of 1.5 MHz. A second set of amplifiers run on a supply voltage slightly above 1V. The amplifiers combine a low power consumption with a gain of 120 dB. In addition, the design of three fully differential operational amplifiers is addressed. Design of Low-Voltage, Low-Power CMOS Operational Amplifier Cells is intended for professional designers of analog circuits. It is also suitable for use as a text book for an advanced course in CMOS operational amplifier design.







CMOS Current Amplifiers


Book Description

This "current-amplifier cookbook" contains an extensive review of different current amplifier topologies realisable with modern CMOS integration technologies. The book derives the seldom-discussed issue of high-frequency distortion performance for all reviewed amplifier topologies, using as simple and intuitive mathematical methods as possible.




Analysis and Design of Analog Integrated Circuits


Book Description

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS Authoritative and comprehensive textbook on the fundamentals of analog integrated circuits, with learning aids included throughout Written in an accessible style to ensure complex content can be appreciated by both students and professionals, this Sixth Edition of Analysis and Design of Analog Integrated Circuits is a highly comprehensive textbook on analog design, offering in-depth coverage of the fundamentals of circuits in a single volume. To aid in reader comprehension and retention, supplementary material includes end of chapter problems, plus a Solution Manual for instructors. In addition to the well-established concepts, this Sixth Edition introduces a new super-source follower circuit and its large-signal behavior, frequency response, stability, and noise properties. New material also introduces replica biasing, describes and analyzes two op amps with replica biasing, and provides coverage of weighted zero-value time constants as a method to estimate the location of dominant zeros, pole-zero doublets (including their effect on settling time and three examples of circuits that create doublets), the effect of feedback on pole-zero doublets, and MOS transistor noise performance (including a thorough treatment on thermally induced gate noise). Providing complete coverage of the subject, Analysis and Design of Analog Integrated Circuits serves as a valuable reference for readers from many different types of backgrounds, including senior undergraduates and first-year graduate students in electrical and computer engineering, along with analog integrated-circuit designers.




Operational Amplifier Speed and Accuracy Improvement


Book Description

Operational Amplifier Speed and Accuracy Improvement proposes a new methodology for the design of analog integrated circuits. The usefulness of this methodology is demonstrated through the design of an operational amplifier. This methodology consists of the following iterative steps: description of the circuit functionality at a high level of abstraction using signal flow graphs; equivalent transformations and modifications of the graph to the form where all important parameters are controlled by dedicated feedback loops; and implementation of the structure using a library of elementary cells. Operational Amplifier Speed and Accuracy Improvement shows how to choose structures and design circuits which improve an operational amplifier's important parameters such as speed to power ratio, open loop gain, common-mode voltage rejection ratio, and power supply rejection ratio. The same approach is used to design clamps and limiting circuits which improve the performance of the amplifier outside of its linear operating region, such as slew rate enhancement, output short circuit current limitation, and input overload recovery.




Low Power RF Circuit Design in Standard CMOS Technology


Book Description

Low Power Consumption is one of the critical issues in the performance of small battery-powered handheld devices. Mobile terminals feature an ever increasing number of wireless communication alternatives including GPS, Bluetooth, GSM, 3G, WiFi or DVB-H. Considering that the total power available for each terminal is limited by the relatively slow increase in battery performance expected in the near future, the need for efficient circuits is now critical. This book presents the basic techniques available to design low power RF CMOS analogue circuits. It gives circuit designers a complete guide of alternatives to optimize power consumption and explains the application of these rules in the most common RF building blocks: LNA, mixers and PLLs. It is set out using practical examples and offers a unique perspective as it targets designers working within the standard CMOS process and all the limitations inherent in these technologies.




Analogue IC Design


Book Description

Analogue IC Design has become the essential title covering the current-mode approach to integrated circuit design. The approach has sparked much interest in analogue electronics and is linked to important advances in integrated circuit technology, such as CMOS VLSI which allows mixed analogue and digital circuits and high-speed GaAs processing.




CMOS Analog Design Using All-Region MOSFET Modeling


Book Description

The essentials of analog circuit design with a unique all-region MOSFET modeling approach.