Lower Bounds for the Rank and Location of the Eigenvalues of a Matrix (Classic Reprint)


Book Description

Excerpt from Lower Bounds for the Rank and Location of the Eigenvalues of a Matrix The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: The Journal of Research, which presents com plete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Hand books, Building Materials and Structures Reports, and Miscellaneous Publications. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.







Numerical Methods for Large Eigenvalue Problems


Book Description

This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.




On the Eigenvalues Which Give Upper and Lower Bounds on Scattering Phases (Classic Reprint)


Book Description

Excerpt from On the Eigenvalues Which Give Upper and Lower Bounds on Scattering Phases G normalization. It satisfies 0 5 9 u but is otherwise arbitrary. A bar over an expression means that the expression is exact. Eelfr) and ugl(r) are the exact and trial functions respectively. Wbl(r) c ugl(r) tiel(r). 7l and 7l are the L-th exact and trial phase shifts respectively. The total phase is the L-th phase shift less Ln/2. P(r) 2 0 is the weight function up(r) is the additional potential in the associated eigenvalue problem. For all values of u, up must satisfy the conditions imposed upon any potential in order that there be a well defined phase. [nl(r) is the eigenfunction of the associated eigenvalue problem with a phase shift 9 nu, where n 0, j; l, and with eigenvalue nl' About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.




Eigenvalue Placement for Regular Matrix Pencils with Rank One Perturbations


Book Description

A regular matrix pencil sE-A and its rank one perturbations are considered. We determine the sets in \C\cup\{\infty\} which are the eigenvalues of the perturbed pencil. We show that the largest Jordan chains at each eigenvalue of sE-A may disappear and the sum of the length of all destroyed Jordan chains is the number of eigenvalues (counted with multiplicities) which can be placed arbitrarily in \C\cup\{\infty\}. We prove sharp upper and lower bounds of the change of the algebraic and geometric multiplicity of an eigenvalue under rank one perturbations. Finally we apply our results to a pole placement problem for a single-input differential algebraic equation with feedback.




An Introduction to Matrix Concentration Inequalities


Book Description

Random matrices now play a role in many areas of theoretical, applied, and computational mathematics. It is therefore desirable to have tools for studying random matrices that are flexible, easy to use, and powerful. Over the last fifteen years, researchers have developed a remarkable family of results, called matrix concentration inequalities, that achieve all of these goals. This monograph offers an invitation to the field of matrix concentration inequalities. It begins with some history of random matrix theory; it describes a flexible model for random matrices that is suitable for many problems; and it discusses the most important matrix concentration results. To demonstrate the value of these techniques, the presentation includes examples drawn from statistics, machine learning, optimization, combinatorics, algorithms, scientific computing, and beyond.




The Random Matrix Theory of the Classical Compact Groups


Book Description

This is the first book to provide a comprehensive overview of foundational results and recent progress in the study of random matrices from the classical compact groups, drawing on the subject's deep connections to geometry, analysis, algebra, physics, and statistics. The book sets a foundation with an introduction to the groups themselves and six different constructions of Haar measure. Classical and recent results are then presented in a digested, accessible form, including the following: results on the joint distributions of the entries; an extensive treatment of eigenvalue distributions, including the Weyl integration formula, moment formulae, and limit theorems and large deviations for the spectral measures; concentration of measure with applications both within random matrix theory and in high dimensional geometry; and results on characteristic polynomials with connections to the Riemann zeta function. This book will be a useful reference for researchers and an accessible introduction for students in related fields.




Handbook of Variational Methods for Nonlinear Geometric Data


Book Description

This book covers different, current research directions in the context of variational methods for non-linear geometric data. Each chapter is authored by leading experts in the respective discipline and provides an introduction, an overview and a description of the current state of the art. Non-linear geometric data arises in various applications in science and engineering. Examples of nonlinear data spaces are diverse and include, for instance, nonlinear spaces of matrices, spaces of curves, shapes as well as manifolds of probability measures. Applications can be found in biology, medicine, product engineering, geography and computer vision for instance. Variational methods on the other hand have evolved to being amongst the most powerful tools for applied mathematics. They involve techniques from various branches of mathematics such as statistics, modeling, optimization, numerical mathematics and analysis. The vast majority of research on variational methods, however, is focused on data in linear spaces. Variational methods for non-linear data is currently an emerging research topic. As a result, and since such methods involve various branches of mathematics, there is a plethora of different, recent approaches dealing with different aspects of variational methods for nonlinear geometric data. Research results are rather scattered and appear in journals of different mathematical communities. The main purpose of the book is to account for that by providing, for the first time, a comprehensive collection of different research directions and existing approaches in this context. It is organized in a way that leading researchers from the different fields provide an introductory overview of recent research directions in their respective discipline. As such, the book is a unique reference work for both newcomers in the field of variational methods for non-linear geometric data, as well as for established experts that aim at to exploit new research directions or collaborations. Chapter 9 of this book is available open access under a CC BY 4.0 license at link.springer.com.




Accuracy and Stability of Numerical Algorithms


Book Description

Accuracy and Stability of Numerical Algorithms gives a thorough, up-to-date treatment of the behavior of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, perturbation theory, and rounding error analysis, all enlivened by historical perspective and informative quotations. This second edition expands and updates the coverage of the first edition (1996) and includes numerous improvements to the original material. Two new chapters treat symmetric indefinite systems and skew-symmetric systems, and nonlinear systems and Newton's method. Twelve new sections include coverage of additional error bounds for Gaussian elimination, rank revealing LU factorizations, weighted and constrained least squares problems, and the fused multiply-add operation found on some modern computer architectures.




The Symmetric Eigenvalue Problem


Book Description

According to Parlett, "Vibrations are everywhere, and so too are the eigenvalues associated with them. As mathematical models invade more and more disciplines, we can anticipate a demand for eigenvalue calculations in an ever richer variety of contexts." Anyone who performs these calculations will welcome the reprinting of Parlett's book (originally published in 1980). In this unabridged, amended version, Parlett covers aspects of the problem that are not easily found elsewhere. The chapter titles convey the scope of the material succinctly. The aim of the book is to present mathematical knowledge that is needed in order to understand the art of computing eigenvalues of real symmetric matrices, either all of them or only a few. The author explains why the selected information really matters and he is not shy about making judgments. The commentary is lively but the proofs are terse. The first nine chapters are based on a matrix on which it is possible to make similarity transformations explicitly. The only source of error is inexact arithmetic. The last five chapters turn to large sparse matrices and the task of making approximations and judging them.